Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2017_51_4_a6, author = {B. L. Feigin and V. V. Sopin}, title = {Combinatorics of a statistical model constructed from the $2\times n$ square lattice}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {72--78}, publisher = {mathdoc}, volume = {51}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a6/} }
TY - JOUR AU - B. L. Feigin AU - V. V. Sopin TI - Combinatorics of a statistical model constructed from the $2\times n$ square lattice JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 72 EP - 78 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a6/ LA - ru ID - FAA_2017_51_4_a6 ER -
B. L. Feigin; V. V. Sopin. Combinatorics of a statistical model constructed from the $2\times n$ square lattice. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 72-78. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a6/
[1] D. S. Gaunt, M. E. Fisher, “Hard-sphere lattice gases, I. Plane-square lattice”, J. Chem. Phys, 43 (1965), 2840–2863 | DOI | MR
[2] R. J. Baxter, I. G. Enting, S. K. Tsang, “Hard-square lattice gas”, J. Statist. Phys., 22:4 (1980), 465–489 | DOI | MR
[3] R. J. Baxter, “Planar lattice gases with nearest-neighbor exclusion”, Ann. Comb., 3:2–4 (1999), 191–203 | DOI | MR | Zbl
[4] P. Fendley, K. Schoutens, H. van Eerten, “Hard squares with negative activity”, J. Phys. A: Math. Gen., 38:2 (2005), 315–322 | DOI | MR | Zbl
[5] J. Jonsson, “Hard squares with negative activity and rhombus tilings of the plane”, Electron. J. Combin., 13:1 (2006), paper 67 | DOI | MR | Zbl
[6] D. S. Gaunt, M. E. Fisher, “Hard-sphere lattice gases. I. Plane-square lattice”, J. Chem. Phys., 43:8 (1965), 2840–2863 | DOI | MR
[7] L. Huijse, J. Halverson, P. Fendley, K. Schoutens, “Charge frustration and quantum criticality for strongly correlated fermions”, Phys. Rev. Lett., 101:14 (2008) | DOI | MR
[8] L. Huijse, K. Schoutens, “Supersymmetry, lattice fermions, independence complexes and cohomology theory”, Adv. Theor. Math. Phys., 14:2 (2010), 643–694 | DOI | MR | Zbl