Combinatorics of a statistical model constructed from the $2\times n$ square lattice
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 72-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various weight functions for the model of a $2\times n$ square lattice are defined so that the graded Euler characteristic for the complex corresponding to this model remain equal to the usual one. Differentials preserving these gradings and determining one-dimensional cohomology are also specified.
Keywords: hard-square model, square ladder, Euler characteristic, grading, weight function, square lattice.
@article{FAA_2017_51_4_a6,
     author = {B. L. Feigin and V. V. Sopin},
     title = {Combinatorics of a statistical model constructed from the $2\times n$ square lattice},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--78},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a6/}
}
TY  - JOUR
AU  - B. L. Feigin
AU  - V. V. Sopin
TI  - Combinatorics of a statistical model constructed from the $2\times n$ square lattice
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 72
EP  - 78
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a6/
LA  - ru
ID  - FAA_2017_51_4_a6
ER  - 
%0 Journal Article
%A B. L. Feigin
%A V. V. Sopin
%T Combinatorics of a statistical model constructed from the $2\times n$ square lattice
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 72-78
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a6/
%G ru
%F FAA_2017_51_4_a6
B. L. Feigin; V. V. Sopin. Combinatorics of a statistical model constructed from the $2\times n$ square lattice. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 72-78. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a6/

[1] D. S. Gaunt, M. E. Fisher, “Hard-sphere lattice gases, I. Plane-square lattice”, J. Chem. Phys, 43 (1965), 2840–2863 | DOI | MR

[2] R. J. Baxter, I. G. Enting, S. K. Tsang, “Hard-square lattice gas”, J. Statist. Phys., 22:4 (1980), 465–489 | DOI | MR

[3] R. J. Baxter, “Planar lattice gases with nearest-neighbor exclusion”, Ann. Comb., 3:2–4 (1999), 191–203 | DOI | MR | Zbl

[4] P. Fendley, K. Schoutens, H. van Eerten, “Hard squares with negative activity”, J. Phys. A: Math. Gen., 38:2 (2005), 315–322 | DOI | MR | Zbl

[5] J. Jonsson, “Hard squares with negative activity and rhombus tilings of the plane”, Electron. J. Combin., 13:1 (2006), paper 67 | DOI | MR | Zbl

[6] D. S. Gaunt, M. E. Fisher, “Hard-sphere lattice gases. I. Plane-square lattice”, J. Chem. Phys., 43:8 (1965), 2840–2863 | DOI | MR

[7] L. Huijse, J. Halverson, P. Fendley, K. Schoutens, “Charge frustration and quantum criticality for strongly correlated fermions”, Phys. Rev. Lett., 101:14 (2008) | DOI | MR

[8] L. Huijse, K. Schoutens, “Supersymmetry, lattice fermions, independence complexes and cohomology theory”, Adv. Theor. Math. Phys., 14:2 (2010), 643–694 | DOI | MR | Zbl