Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2017_51_4_a3, author = {Anh Tuan Duong}, title = {A trace formula and application to {Stark} {Hamiltonians} with nonconstant magnetic fields}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {34--49}, publisher = {mathdoc}, volume = {51}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a3/} }
TY - JOUR AU - Anh Tuan Duong TI - A trace formula and application to Stark Hamiltonians with nonconstant magnetic fields JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 34 EP - 49 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a3/ LA - ru ID - FAA_2017_51_4_a3 ER -
Anh Tuan Duong. A trace formula and application to Stark Hamiltonians with nonconstant magnetic fields. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 34-49. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a3/
[1] M. Sh. Birman, M. G. Krein, “K teorii volnovykh operatorov i operatorov rasseyaniya”, Dokl. AN SSSR, 144:3 (1962), 475–478 | Zbl
[2] M. Sh. Birman, A. B. Pushnitski, “Spectral shift function, amazing and multifaceted”, Integral Equations Operator Theory, 30:2 (1998), 191–199 | DOI | MR | Zbl
[3] M. Sh. Birman, D. R. Yafaev, “Funktsiya spektralnogo sdviga. Raboty M.G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | Zbl
[4] J-F. Bony, V. Bruneau, G. Raikov, “Resonances and spectral shift function near the Landau levels”, Ann. Inst. Fourier (Grenoble), 57:2 (2007), 629–671 | DOI | MR | Zbl
[5] M. Dimassi, “Développements asymptotiques de l'opérateur de {S}chrödinger avec champ magnétique fort”, Comm. Partial Differential Equations, 26:3–4 (2001), 595–627 | DOI | MR | Zbl
[6] M. Dimassi, M. Zerzeri, “A local trace formula for resonances of perturbed periodic {S}chrödinger operators”, J. Funct. Anal., 198:1 (2003), 142–159 | DOI | MR | Zbl
[7] M. Dimassi, V. Petkov, “Spectral shift function and resonances for non-semi-bounded and Stark Hamiltonians”, J. Math. Pures Appl. (9), 82:10 (2003), 1303–1342 | DOI | MR | Zbl
[8] M. Dimassi, V. Petkov, “Resonances for magnetic Stark Hamiltonians in two-dimensional case”, Int. Math. Res. Notices, 77 (2004), 4147–4179 | DOI | MR | Zbl
[9] M. Dimassi, V. Petkov, “Spectral problems for operators with crossed magnetic and electric fields”, J. Phys. A, 43:47 (2010), 474015 | DOI | MR | Zbl
[10] M. Dimassi, V. Petkov, “Spectral shift function for operators with crossed magnetic and electric fields”, Rev. Math. Phys., 22:4 (2010), 355–380 | DOI | MR | Zbl
[11] M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, v. 268, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[12] M. Dimassi, M. Zerzeri, “Spectral shift function for perturbed periodic Schrödinger operators. The large-coupling constant limit case”, Asymptot. Anal., 75:3–4 (2011), 233–250 | DOI | MR | Zbl
[13] B. Helffer, R. Purice, “Magnetic calculus and semiclassical trace formulas”, J. Phys. A, 43:47 (2010), 474028 | DOI | MR | Zbl
[14] E. Korotyaev, A. Pushnitski, “Trace formulae and high energy asymptotics for the Stark operator”, Comm. Partial Differential Equations, 28:3–4 (2003), 817–842 | DOI | MR | Zbl
[15] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33(75):3 (1953), 597–626 | Zbl
[16] A. B. Pushnitskii, “Predstavlenie dlya funktsii spektralnogo sdviga v sluchae znakoopredelennykh vozmuschenii”, Algebra i analiz, 9:6 (1997), 197–213 | MR | Zbl
[17] G. Raikov, “Spectral shift function for magnetic {S}chrödinger operators”, Mathematical Physics of Quantum Mechanics, Lecture Notes in Phys., 690, Springer-Verlag, Berlin, 2006, 451–465 | DOI | MR | Zbl
[18] D. Robert, Autour de l'approximation semi-classique, v. 68, Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1987 | MR | Zbl
[19] D. Robert, “Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien”, Ann. Sci. École Norm. Sup. (4), 25:2 (1992), 107–134 | DOI | MR | Zbl
[20] D. Robert, “Semiclassical asymptotics for the spectral shift function”, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 187–203 | MR | Zbl
[21] D. Robert and X. P. Wang, “Time-delay and spectral density for Stark Hamiltonians. II. Asymptotics of trace formulae”, Chinese Ann. Math. Ser. B, 12:3 (1991), 358–383 | MR | Zbl
[22] B. Simon, Trace Ideals and Their Applications, v. 35, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1979 | MR | Zbl
[23] D. R. Yafaev, Matematicheskaya teoriya rasseyaniya, Izd-vo S.-Peterburgskogo un-ta, SPb, 1994 | MR
[24] D. R. Yafaev, “Operator Shredingera: opredeliteli vozmuscheniya, funktsiya spektralnogo sdviga, tozhdestva sledov i prochee”, Funkts. analiz i ego pril., 41:3 (2007), 60–83 | DOI | MR | Zbl
[25] M. Zworski, Semiclassical Analysis, v. 138, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl