Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2017_51_4_a2, author = {A. N. Vetokhin}, title = {On properties of topological pressure}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {26--33}, publisher = {mathdoc}, volume = {51}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a2/} }
A. N. Vetokhin. On properties of topological pressure. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 26-33. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a2/
[1] D. Ruelle, “Statistical mechanics on a compact set with $Z^\nu$ action satisfying expansiveness and specification”, Trans. Amer. Math. Soc., 185 (1973), 237–251 | DOI | MR
[2] P. Walters, “A variational principle for the pressure of continuous transformations”, Amer. J. Math., 97:4 (1975), 937–971 | DOI | MR
[3] R. Bowen, D. Ruelle, “The ergodic theory of Axiom A flows”, Invent. Math., 29:3 (1975), 181–202 | DOI | MR | Zbl
[4] M. T. Misiurewicz, “Horseshoes for mappings of the interval”, Bull. Acad. Polon. Sci. Ser. Math. Astron. et Phys., 27:2 (1979), 167–169 | MR | Zbl
[5] A. N. Vetokhin, “O nekotorykh svoistvakh topologicheskoi entropii dinamicheskikh sistem”, Matem. zametki, 93:3 (2013), 347–356 | DOI | MR | Zbl
[6] A. N. Vetokhin, “O svoistvakh topologicheskoi entropii na kompaktnom semeistve otobrazhenii”, Matem. zametki, 99:3 (2016), 333–341 | DOI | MR | Zbl
[7] P. Ber, Teoriya razryvnykh funktsii, GTTI, M.-L., 1932
[8] F. Khausdorf, Teoriya mnozhestv, ONTI, M., 1937
[9] Ya. B. Pesin, Dimension Theory in Synamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, Il, 1997 | MR
[10] A. B. Katok, “Lyapunov exponents, entropy and periodic orbits for diffeomorfisms”, Publ. Math., Inst. Hautes Étud. Sci., 51 (1980), 137–173 | DOI | MR | Zbl