Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2017_51_4_a1, author = {P. V. Bibikov}, title = {On {Lie{\textquoteright}s} problem and differential invariants of {ODEs} $y''=F(x,y)$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {16--25}, publisher = {mathdoc}, volume = {51}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a1/} }
P. V. Bibikov. On Lie’s problem and differential invariants of ODEs $y''=F(x,y)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 16-25. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a1/
[1] D. V. Alekseevskii, A. M. Vinogradov, V. V. Lychagin, Osnovnye idei i ponyatiya differentsialnoi geometrii, Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, 28, VINITI, M., 1988
[2] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, MTsNMO, M., 2012
[3] Yu. Yu. Bagderina, “Ekvivalentnost obyknovennykh differentsialnykh uravnenii vtorogo poryadka uravneniyam Penleve”, TMF, 182:2 (2015), 256–276 | DOI | MR | Zbl
[4] P. V. Bibikov, “O tochechnoi ekvivalentnosti funktsii na prostranstve 1-dzhetov $J^1\mathbb{R}$”, Funkts. analiz i ego pril., 48:4 (2014), 19–25 | DOI | Zbl
[5] O. I. Morozov, “Problema tochechnoi ekvivalentnosti dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Nauchn. vestn. MGTUGA,, 157 (2010), 92–106
[6] P. Bibikov, V. Lychagin, “$\mathrm{GL}_2(\mathbb{C})$-orbits of binary rational forms”, Lobachevskii J. Math., 32:1 (2011), 95–102 | DOI | MR | Zbl
[7] E. Cartan, “Sur les variétsé à connexion projective”, Bull. Soc. Math. France, 52 (1924), 205–241 | DOI | MR | Zbl
[8] B. S. Kruglikov, “Point Classification of Second Order ODEs: Tresse Classification Revisited and Beyond”, Proc. of the Fifth Abel Symposium (Tromso, Norway, June 17–22), Springer-Verlag, Berlin, 2008, 199–221 | MR
[9] B. Kruglikov, V. Lychagin, “Global Lie-Tresse theorem”, Selecta Math., New Ser., 22:3 (2016), 1357–1411 | DOI | MR | Zbl
[10] S. Lie, “Klassifikation und Integration von gewo\:hnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten. III”, Archiv for Mathematik og Naturvidenskab, Kristiania, 8 (1883), 371–458; Gesam. Abh. Bd., 5, Teubner, Leipzig, 1924, paper XIV, 362–427 | MR
[11] R. Liouville, “Sur les invariants de certaines eq́uations diffeŕentielles et sur leurs applications”, J. l'Ećole Polytechnique, 59 (1889), 7–76
[12] V. V. Lychagin, “Feedback differential invariants”, Acta Appl. Math., 109:1 (2010), 211–222 | DOI | MR | Zbl
[13] R. A. Sharipov, Effective procedure of point classification for the equations $y'' = P + 3Qy' + 3Ry'^2 + Sy'^3$,, arXiv: http://arxiv.org/abs/math/9802027v1
[14] A. Tresse, Détermination des invariants ponctuels de l' équation différentielle ordinaire du second ordre $y'' = \omega(x,y,y')$, Hirzel, Leipzig, 1896
[15] V. A. Yumaguzhin, Differential invariants of 2-order ODEs, I,, arXiv: http://arxiv.org/abs/0804.0674v1 | MR