Reduced synthesis in harmonic analysis and compact synthesis in operator theory
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 98-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of reduced synthesis in the context of harmonic analysis on general locally compact groups is introduced; in the classical situation of commutative groups, this notion means that a function f in the Fourier algebra is annihilated by any pseudofunction supported on $f^{-1}(0)$. A relationship between reduced synthesis and compact synthesis (i.e., the possibility of approximating compact operators by pseudointegral ones without increasing the support) is determined, which makes it possible to obtain new results both in operator theory and in harmonic analysis. Applications to the theory of linear operator equations are also given.
Keywords: locally compact group, reduced $C^*$-algebra of a locally compact group, Fourier algebra compact operator, linear operator equation.
Mots-clés : masa-bimodule
@article{FAA_2017_51_3_a8,
     author = {I. G. Todorov and L. Turowska and V. S. Shulman},
     title = {Reduced synthesis in harmonic analysis and compact synthesis in operator theory},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {98--102},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a8/}
}
TY  - JOUR
AU  - I. G. Todorov
AU  - L. Turowska
AU  - V. S. Shulman
TI  - Reduced synthesis in harmonic analysis and compact synthesis in operator theory
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 98
EP  - 102
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a8/
LA  - ru
ID  - FAA_2017_51_3_a8
ER  - 
%0 Journal Article
%A I. G. Todorov
%A L. Turowska
%A V. S. Shulman
%T Reduced synthesis in harmonic analysis and compact synthesis in operator theory
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 98-102
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a8/
%G ru
%F FAA_2017_51_3_a8
I. G. Todorov; L. Turowska; V. S. Shulman. Reduced synthesis in harmonic analysis and compact synthesis in operator theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 98-102. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a8/

[1] W. B. Arveson, Ann. of Math. (2), 100 (1974), 433–532 | DOI | MR | Zbl

[2] M. Bo.{z}ejko, G. Fendler, Boll. Un. Mat. Ital. A (6), 2:2 (1984), 297–302

[3] J. A. Erdos, A. Katavolos, V. S. Shulman, J. Funct. Anal., 157:2 (1998), 554–587 | DOI | MR | Zbl

[4] P. Eymard, Bull. Soc. Math. France, 92 (1964), 181–236 | DOI | MR | Zbl

[5] J. Ludwig, L. Turowska, J. Funct. Anal., 233:1 (2006), 206–227 | DOI | MR | Zbl

[6] P. Mallyavin, Publ. Math. Inst. Hautes Etudes Sci., 1959 (1959), 85–92 | MR

[7] W. Rudin, Fourier analysis on groups, John Wiley Sons, New York, 1990 | MR | Zbl

[8] S. Saeki, Proc. Amer. Math. Soc., 47 (1975), 371–377 | DOI | MR | Zbl

[9] L. Schwartz, C. R. Acad. Sci. Paris, 227 (1948), 424–426 | MR | Zbl

[10] V. S. Shulman, I. G. Todorov, L. Turowska, J. Funct. Anal., 268:6 (2015), 1454–1508 | DOI | MR | Zbl

[11] V. S. Shulman, L. Turowska, J. Funct. Anal., 209:2 (2004), 293–331 | DOI | MR | Zbl

[12] V. S. Shulman, L. Turowska, J. Reine Angew. Math., 590 (2006), 143–187 | MR | Zbl

[13] N. Th. Varopoulos, Proc. Cambridge Philos. Soc., 62 (1966), 379–387 | DOI | MR