Trace formulas for a discrete Schrödinger operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 81-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Schrödinger operator with complex decaying potential on a lattice is considered. Trace formulas are derived on the basis of classical results of complex analysis. These formulas are applied to obtain global estimates of all zeros of the Fredholm determinant in terms of the potential.
Mots-clés : trace formula
Keywords: complex potential, eigenvalues.
@article{FAA_2017_51_3_a5,
     author = {E. L. Korotyaev and A. Laptev},
     title = {Trace formulas for a discrete {Schr\"odinger} operator},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--86},
     year = {2017},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a5/}
}
TY  - JOUR
AU  - E. L. Korotyaev
AU  - A. Laptev
TI  - Trace formulas for a discrete Schrödinger operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 81
EP  - 86
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a5/
LA  - ru
ID  - FAA_2017_51_3_a5
ER  - 
%0 Journal Article
%A E. L. Korotyaev
%A A. Laptev
%T Trace formulas for a discrete Schrödinger operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 81-86
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a5/
%G ru
%F FAA_2017_51_3_a5
E. L. Korotyaev; A. Laptev. Trace formulas for a discrete Schrödinger operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 81-86. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a5/

[1] A. Borichev, L. Golinskii, S. Kupin, Bull. London Math. Soc., 41:1 (2009), 117–123 | DOI | MR | Zbl

[2] A. Boutet de Monvel, J. Sahbani, Rev. Math. Phys., 11:9 (1999), 1061–1078 | DOI | MR | Zbl

[3] M. Demuth, M. Hansmann, G. Katriel, J. Funct. Anal., 257:9 (2009), 2742–2759 | DOI | MR | Zbl

[4] R. L. Frank, Bull. Lond. Math. Soc., 43:4 (2011), 745–750 | DOI | MR | Zbl

[5] R. L. Frank, A. Laptev, E. H. Lieb, R. Seiringer, Lett. Math. Phys., 77 (2006), 309–316 | DOI | MR | Zbl

[6] R. L. Frank, A. Laptev, O. Safronov, J. London Math. Soc., 94:2 (2016), 377–390 | DOI | MR | Zbl

[7] R. L. Frank, J. Sabin, arXiv: 1404.2817

[8] R. L. Frank, A. Laptev, R. Seiringer, “Spectral theory and analysis”, Oper. Theory Adv. Appl., v. 214, Birkhäuser/Springer Basel AG, Basel, 2011, 39–44 | MR

[9] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[10] H. Isozaki, E. Korotyaev, Ann. Henri Poincaré, 13:4 (2012), 751–788 | DOI | MR | Zbl

[11] H. Isozaki, H. Morioka, Inverse Probl. Imaging, 8:2 (2014), 475–489 | DOI | MR | Zbl

[12] P. Koosis, Introduction to $H_p$ spaces, Cambridge Tracts in Mathematic, 115, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[13] E. A. Kopylova, Algebra i analiz, 21:5 (2009), 87–113

[14] E. Korotyaev, N. Saburova, arXiv: 1507.06441

[15] A. Laptev, O. Safronov, Comm. Math. Phys., 292:1 (2009), 29–54 | DOI | MR | Zbl

[16] E. H. Lieb, W. Thirring, Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, Princeton University Press, Princeton, 1976, 269–303

[17] M. Malamud, H. Neidhardt, Adv. Math., 274 (2015), 736–832 | DOI | MR | Zbl

[18] G. Rosenblum, M. Solomjak, J. Math. Sci. N. Y., Problems in Math. Analysis, No. 41, 159:2 (2009), 241–263 | MR

[19] O. Safronov, Bull. Lond. Math. Soc., 42:3 (2010), 452–456 | DOI | MR | Zbl

[20] O. Safronov, Proc. Amer. Math. Soc., 138:6 (2010), 2107–2112 | DOI | MR | Zbl

[21] W. Shaban, B. Vainberg, Appl. Anal., 80 (2001), 525–556 | DOI | MR | Zbl

[22] M. Toda, Theory of Nonlinear Lattices, 2nd. ed., Springer-Verlag, Berlin, 1989 | MR | Zbl