The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 4-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus $3$ is described in terms of the gradient of its sigma function. As an application, solutions of the corresponding families of polynomial dynamical systems in $C^4$ with two polynomial integrals are constructed. These systems were introduced by Buchstaber and Mikhailov on the basis of commuting vector fields on the symmetric square of algebraic curves.
Keywords: Abelian functions, hyperelliptic sigma functions, polynomial dynamical systems, commuting vector fields, symmetric products of algebraic curves.
@article{FAA_2017_51_3_a0,
     author = {T. Ayano and V. M. Buchstaber},
     title = {The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {4--21},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a0/}
}
TY  - JOUR
AU  - T. Ayano
AU  - V. M. Buchstaber
TI  - The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 4
EP  - 21
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a0/
LA  - ru
ID  - FAA_2017_51_3_a0
ER  - 
%0 Journal Article
%A T. Ayano
%A V. M. Buchstaber
%T The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 4-21
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a0/
%G ru
%F FAA_2017_51_3_a0
T. Ayano; V. M. Buchstaber. The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 4-21. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a0/

[1] T. Ayano, “On Jacobi inversion formulae for telescopic curves”, SIGMA, 12 (2016), 086 | MR | Zbl

[2] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR | Zbl

[3] H. F. Baker, “On a system of differential equations leading to periodic functions”, Acta Math., 27:1 (1903), 135–156 | DOI | MR | Zbl

[4] H. F. Baker, An introduction to the theory of multiply-periodic functions, Cambridge Univ. Press, Cambridge, 1907 | MR | Zbl

[5] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Sbornik statei, Tr. MIAN, 294, 2016, 191–215 | DOI | Zbl

[6] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Amer. Math. Soc. Trans., Ser. 2, 179 (1997), 1–33 | MR

[7] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR | Zbl

[8] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, Multi-dimensional sigma-functions, arXiv: 1208.0990

[9] V. M. Bukhshtaber, D. V. Leikin, “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl

[10] V. M. Bukhshtaber, A. V. Mikhailov, “Beskonechnomernye algebry Li, opredelyaemye prostranstvom simmetricheskikh kvadratov giperellipticheskikh krivykh”, Funkts. analiz i ego pril., 51:1 (2017), 4–27 | DOI | MR | Zbl

[11] E. Y. Bunkova, Differentiation of genus 3 hyperelliptic functions, arXiv: 1703.03947

[12] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[13] A. Nakayashiki, “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14:2 (2010), 175–212 | DOI | MR | Zbl

[14] Y. Onishi, “Complex multiplication formulae for hyperelliptic curve of genus three”, Tokyo J. Math., 21:2 (1998), 381–431 | DOI | MR | Zbl

[15] Y. Onishi, “Determinant expressions for hyperelliptic functions. With an appendix by Shigeki Matsutani”, Proc. Edinb. Math. Soc., 48:3 (2005), 705–742 | DOI | MR | Zbl

[16] J. Komeda, S. Matsutani, E. Previato The sigma function for Weierstrass semigroups $\langle 3, 7, 8\rangle$ and $\langle 6, 13, 14, 15, 16\rangle$, Internat. J. Math., 24:11 (2013), 1350085 | DOI | MR | Zbl

[17] K. Weierstrass, “Zur Theorie der elliptischen Functionen”, Mathematische Werke, v. 2, Mayer Müller, Berlin, 1895, 245–255

[18] K. Weierstrass, “Die Abelschen Functionen”, Mathematische Werke, v. 4, Mayer Müller, Berlin, 1902, 439–624

[19] E. T. Uittaker, Dzh. N. Vatson, Kurs sovremennogo analiza, chast II, Fizmatgiz, M., 1963