A $C^1$ Anosov diffeomorphism with a horseshoe that attracts almost any point
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 83-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an example of a $C^1$ Anosov diffeomorphism with a physical measure such that its basin has full Lebesgue measure and its support is a horseshoe of zero measure.
Keywords: Anosov diffeomorphism, $C^1$-topology, physical measure, thick horseshoe.
@article{FAA_2017_51_2_a7,
     author = {C. Bonatti and S. S. Minkov and A. V. Okunev and I. S. Shilin},
     title = {A $C^1$ {Anosov} diffeomorphism with a horseshoe that attracts almost any point},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--86},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a7/}
}
TY  - JOUR
AU  - C. Bonatti
AU  - S. S. Minkov
AU  - A. V. Okunev
AU  - I. S. Shilin
TI  - A $C^1$ Anosov diffeomorphism with a horseshoe that attracts almost any point
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 83
EP  - 86
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a7/
LA  - ru
ID  - FAA_2017_51_2_a7
ER  - 
%0 Journal Article
%A C. Bonatti
%A S. S. Minkov
%A A. V. Okunev
%A I. S. Shilin
%T A $C^1$ Anosov diffeomorphism with a horseshoe that attracts almost any point
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 83-86
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a7/
%G ru
%F FAA_2017_51_2_a7
C. Bonatti; S. S. Minkov; A. V. Okunev; I. S. Shilin. A $C^1$ Anosov diffeomorphism with a horseshoe that attracts almost any point. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 83-86. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a7/

[1] C. Bonatti, L. J. Diaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, Berlin, 2005 | MR | Zbl

[2] R. Bowen, Invent. Math., 29:3 (1975), 203–204 | DOI | MR | Zbl

[3] V. Kleptsyn, D. Ryzhov, S. Minkov, Nonlinearity, 25:11 (2012), 3189–3196 | DOI | MR | Zbl

[4] J. Milnor, Comm. Math. Phys., 99:2 (1985), 177–195 | DOI | MR | Zbl

[5] C. Robinson, L. S. Young, Invent. Math., 61:2 (1980), 159–176 | DOI | MR | Zbl