Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 25-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the classical construction of operator colligations and characteristic functions. Consider the group G of finitary block unitary matrices of order $\alpha+\infty+\dots+\infty$ ($m$ times) and its subgroup $K \cong U(\infty)$, which consists of block diagonal unitary matrices with the identity block of order $\alpha$ and a matrix $u \in U(\infty)$ repeated $m$ times. It turns out that there is a natural multiplication on the space $G$//$K$ of conjugacy classes. We construct “spectral data” of conjugacy classes, which visualize the multiplication and are sufficient for reconstructing a conjugacy class.
Keywords: characteristic function, colligation, spectral data, infinite-dimensional group, inner function, Grassmannian, Hermitian symmetric space, invariant theory.
@article{FAA_2017_51_2_a3,
     author = {Yu. A. Neretin},
     title = {Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {25--41},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 25
EP  - 41
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a3/
LA  - ru
ID  - FAA_2017_51_2_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 25-41
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a3/
%G ru
%F FAA_2017_51_2_a3
Yu. A. Neretin. Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 25-41. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a3/

[1] A. Beauville, “Determinantal hypersurfaces”, Michigan Math. J., 48:1 (2000), 39–64 | DOI | MR | Zbl

[2] V. M. Brodskii, “Operatornye uzly i ikh kharakteristicheskie funktsii”, Dokl. AN SSSR, 198 (1971), 16–19

[3] M. S. Brodskii, “Unitarnye operatornye uzly i ikh kharakteristicheskie funktsii”, UMN, 33:4(202) (1978), 141–168 | MR | Zbl

[4] H. Dym, Linear Algebra in Action, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[5] A. A. Gaifullin, Yu. A. Neretin, “Infinite symmetric group and bordisms of pseudomanifolds”, J. Topol. Anal. (to appear) | MR

[6] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[7] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of linear operators., v. 2, Birkhauser, Basel, 1993 | MR | Zbl

[8] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 1, Mir, M., 1982 | MR

[9] M. Hazewinkel, “Lectures on invariants, representations and Lie algebras in systems and control theory”, Séminaire d'algèbre P. Dubreil et M.-P. Malliavin, 35ème Année (Paris 1982), Lecture Notes in Math., 1029, Springer-Verlag, Berlin–Heidelberg, 1983, 1–36 | DOI | MR

[10] N. Hitchin, “Riemann surfaces and integrable systems”, Integrable Systems, Clarendon Press, Oxford, 1999, 11–52 | MR

[11] R. S. Ismagilov, “Elementarnye sfericheskie funktsii na gruppe $\mathrm{SL}(2,P)$ nad polem $P$, ne yavlyayuschimsya lokalno kompaktnym, otnositelno podgruppy matrits s tselymi elementami”, Izv. AN SSSR, ser. matem., 31:2 (1967), 361–390

[12] M. S. Livshits, “Ob odnom klasse lineinykh operatorov v gilbertovom prostranstve”, Matem. sb., 19(61):2 (1946), 239–262 | Zbl

[13] M. S. Livshits, “O spektralnom razlozhenii lineinykh nesamosopryazhennykh operatorov”, Matem. sb., 34:1 (1954), 145–199 | MR | Zbl

[14] C. Martin, R. Hermann, “Applications of algebraic geometry to systems theory: the McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants”, SIAM J. Control Optim., 16:5 (1978), 743–755 | DOI | MR | Zbl

[15] Yu. A. Neretin, Kategorii simmetrii i beskonechnomernye gruppy, Editorial URSS, M., 1998, 2009

[16] Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions”, Anal. Math. Phys., 1:2–3 (2011), 121–138 | DOI | MR | Zbl

[17] Yu. A. Neretin, “Sferichnost i umnozhenie dvoinykh klassov smezhnosti dlya beskonechnomernykh klassicheskikh grupp”, Funkts. analiz i ego pril., 45:3 (2011), 79–96 | DOI | MR | Zbl

[18] Yu. A. Neretin, On concentration of convolutions of double cosets at infinite-dimensional limit, arXiv: 1211.6149

[19] Yu. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories”, Int. Math. Res. Not. IMRN, 3 (2012), 501–523 | DOI | MR | Zbl

[20] Yu. A. Neretin, “Beskonechnomernye $p$-adicheskie gruppy, polugruppy dvoinykh klassov smezhnosti i vnutrennie funktsii na ansamblyakh Bryua–Titsa”, Izv. RAN, ser. matem., 79:3 (2015), 87–130 | DOI | MR | Zbl

[21] Yu. A. Neretin, “Beskonechnaya simmetricheskaya gruppa i kombinatornye konstruktsii tipa topologicheskikh teorii polya”, UMN, 70:4(424) (2015), 143–204 | DOI | MR | Zbl

[22] G. I. Olshanskii Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$, Algebra i analiz, 1:4 (1989), 178–209

[23] G. I. Olshanski, “Unitary representations of infinite dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie Groups and Related Topics, Gordon and Breach, New York, 1990, 269–463 | MR

[24] G. I. Olshanskii, “Caractères généralisés du groupe $\mathrm{U}(\infty)$ et fonctions intérieures”, C. R. Acad. Sci. Paris. Sèr. 1, 313:1 (1991), 9–12 | MR | Zbl

[25] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya–4, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 55, VINITI, M., 1989, 137–309

[26] V. P. Potapov, “Multiplikativnaya struktura $J$-nerastyagivayuschei matrits-funktsii”, Trudy MMO, 4 (1955), 125–236 | Zbl

[27] C. Procesi, “The invariant theory of $n\times n$ matrices”, Adv. in Math., 19:3 (1976), 306–381 | DOI | MR | Zbl

[28] C. Procesi, Lie groups. An Approach Through Invariants and Representations, Springer-Verlag, New York, 2007 | MR | Zbl

[29] B. Sekefalfi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR