Moduli algebras of some non-semiquasihomogeneous singularities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 10-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under some additional restrictions we find dimensions and bases of moduli algebras of isolated singularities of polynomials in n variables that are sums of n monomials of equal weighted degrees and one monomial of lower degree.
Keywords: isolated singularity, moduli algebra, Milnor number, Brieskorn–Pham singularity, Kouchnirenko’s formula.
@article{FAA_2017_51_2_a2,
     author = {E. B. Vinberg and M. A. Jibladze and A. G. Elashvili},
     title = {Moduli algebras of some non-semiquasihomogeneous singularities},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {10--24},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a2/}
}
TY  - JOUR
AU  - E. B. Vinberg
AU  - M. A. Jibladze
AU  - A. G. Elashvili
TI  - Moduli algebras of some non-semiquasihomogeneous singularities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 10
EP  - 24
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a2/
LA  - ru
ID  - FAA_2017_51_2_a2
ER  - 
%0 Journal Article
%A E. B. Vinberg
%A M. A. Jibladze
%A A. G. Elashvili
%T Moduli algebras of some non-semiquasihomogeneous singularities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 10-24
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a2/
%G ru
%F FAA_2017_51_2_a2
E. B. Vinberg; M. A. Jibladze; A. G. Elashvili. Moduli algebras of some non-semiquasihomogeneous singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 10-24. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a2/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, v. 1, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[2] E. B. Vinberg, “Diskretnye lineinye gruppy, porozhdennye otrazheniyami”, Izv. AN SSSR, ser. matem., 35:5 (1971), 1072–1112 | Zbl

[3] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR

[4] A. G. Kushnirenko, “Mnogogrannik Nyutona i chisla Milnora”, Funkts. analiz i ego pril., 9:1 (1975), 74–75 | MR | Zbl

[5] M. Kreuzer, H. Skarke, “On the classification of quasihomogeneous functions”, Comm. Math. Phys., 150:1 (1992), 137–147 | DOI | MR | Zbl

[6] M. Kreuzer, R. Schimmrigk, H. Skarke, “Abelian Landau-Ginzburg orbifolds and mirror symmetry”, Nuclear Phys. B, 372:1–2 (1992), 61–86 | DOI | MR

[7] J. Milnor, P. Orlik, “Isolated singularities defined by weighted homogeneous polynomials”, Topology, 9 (1970), 385–393 | DOI | MR | Zbl

[8] A. Elashvili, M. Jibladze, E. Vinberg, Moduli algebras of some simplest non-quasihomogeneous singularities, Preprint 15-039, Universität Bielefeld, 2015 | MR