Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 97-100
Voir la notice de l'article provenant de la source Math-Net.Ru
A condition for a function of bounded type to belong to the Hardy class $H^1$ in terms of the Fourier transform of the boundary values of this function on $R^n$ is found. Applications of the obtained result to the theories of Hardy classes and of quasi-analytic classes of functions are given.
Mots-clés :
Fourier transform
Keywords: quasi-analytic classes, pluriharmonic function, tubular domain.
Keywords: quasi-analytic classes, pluriharmonic function, tubular domain.
@article{FAA_2017_51_2_a10,
author = {F. A. Shamoyan},
title = {Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {97--100},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a10/}
}
TY - JOUR AU - F. A. Shamoyan TI - Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 97 EP - 100 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a10/ LA - ru ID - FAA_2017_51_2_a10 ER -
F. A. Shamoyan. Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 97-100. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a10/