Keywords: quasi-analytic classes, pluriharmonic function, tubular domain.
@article{FAA_2017_51_2_a10,
author = {F. A. Shamoyan},
title = {Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {97--100},
year = {2017},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a10/}
}
TY - JOUR AU - F. A. Shamoyan TI - Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 97 EP - 100 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a10/ LA - ru ID - FAA_2017_51_2_a10 ER -
F. A. Shamoyan. Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 97-100. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a10/
[1] Dzh. Garnet, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR
[2] U. Rudin, Teoriya funktsii v polikruge, Mir, M., 1974 | MR
[3] A. B. Aleksandrov, Kompleksnyi analiz — mnogie peremennye–2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI, M., 1985, 115–190
[4] V. S. Vladimirov, A. G. Sergeev, Kompleksnyi analiz — mnogie peremennye–2, Itogi nauki i tekhniki. Covremennye problemy matematiki. Fundamentalnye napravleniya, 8, 1985, 191–266
[5] F. A. Shamoyan, Algebra i analiz, 20:4 (2008), 218–240 | MR
[6] F. A. Shamoyan, Sib. matem. zh., 57:6 (2016), 1403–1421 | MR | Zbl
[7] R. B. Salinas, Rev. Acad. Ciencias Madrid, 49 (1955), 331–368 | MR | Zbl
[8] F. A. Shamoyan, Matem. sb., 193:6 (2002), 143–162 | DOI