On the Relationship between Combinatorial Functions and Representation Theory
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 28-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of well-known combinatorial functions on the symmetric group $\mathfrak{S}_n$—the major index $\operatorname{maj}$, the descent number $\operatorname{des}$, and the inversion number $\operatorname{inv}$—from the representation-theoretic point of view. We show that these functions generate the same ideal in the group algebra $\mathbb{C}[\mathfrak{S}_n]$, and the restriction of the left regular representation of the group $\mathfrak{S}_n$ to this ideal is isomorphic to its representation in the space of $n\times n$ skew-symmetric matrices. This allows us to obtain formulas for the functions $\operatorname{maj}$, $\operatorname{des}$, and $\operatorname{inv}$ in terms of matrices of an exceptionally simple form. These formulas are applied to find the spectra of the elements under study in the regular representation, as well as derive a series of identities relating these functions to one another and to the number $\operatorname{fix}$ of fixed points.
Keywords: major index, descent number, inversion number, representations of the symmetric group, skew-symmetric matrices, dual complexity.
@article{FAA_2017_51_1_a2,
     author = {A. M. Vershik and N. V. Tsilevich},
     title = {On the {Relationship} between {Combinatorial} {Functions} and {Representation} {Theory}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {28--39},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. V. Tsilevich
TI  - On the Relationship between Combinatorial Functions and Representation Theory
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 28
EP  - 39
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a2/
LA  - ru
ID  - FAA_2017_51_1_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. V. Tsilevich
%T On the Relationship between Combinatorial Functions and Representation Theory
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 28-39
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a2/
%G ru
%F FAA_2017_51_1_a2
A. M. Vershik; N. V. Tsilevich. On the Relationship between Combinatorial Functions and Representation Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 28-39. http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a2/

[1] R. Stenli, Perechislitelnaya kombinatorika, v. 1, Mir, M., 1990

[2] M. Bo.{z}ejko, R. Szwarc, “Algebraic length and Poincaré series on reflection groups with applications to representation theory”, Asymptotic Combinatorics with Applications to Mathematical Physics, Lecture Notes in Math., 1815, 2003, 201–221 | DOI | MR

[3] A. R. Calderbank, P. Hanlon, S. Sundaram, “Representations of the symmetric group in deformations of the free Lie algebra”, Trans. Amer. Math. Soc., 341:1 (1994), 315–333 | DOI | MR | Zbl

[4] L. Carlitz, “$q$-Bernoulli and Eulerian numbers”, Trans. Amer. Math. Soc., 76 (1954), 332–350 | MR | Zbl

[5] D. Foata, “On the Netto inversion number of a sequence”, Proc. Amer. Math. Soc., 19 (1968), 236–240 | DOI | MR | Zbl

[6] D. Foata, M.-P. Schützenberger, “Major index and inversion number of permutations”, Math. Nachr., 83 (1978), 143–159 | DOI | MR | Zbl

[7] A. Garsia, C. Reutenauer, “A decomposition of Solomon's descent algebra”, Adv. Math., 77:2 (1989), 189–262 | DOI | MR | Zbl

[8] A. Garsia, I. Gessel, “Permutation statistics and partitions”, Adv. Math., 31:3 (1979), 288–305 | DOI | MR | Zbl

[9] I. Gessel, C. Reutenauer, “Counting permutations with given cycle structure and descent set”, J. Combin. Theory Ser. A, 64:2 (1993), 189–215 | DOI | MR | Zbl

[10] P. A. MacMahon, Combinatory Analysis, v. 2, Cambridge University Press, London, 1915–1916 ; Reprinted by, Chelsea, New York, 1960 | MR

[11] J. Shareshian, M. L. Wachs, “Eulerian quasisymmetric functions”, Adv. Math., 225:6 (2010), 2921–2966 | DOI | MR | Zbl

[12] L. Solomon, “A Mackey formula in the group ring of a Coxeter group”, J. Algebra, 41:2 (1976), 255–264 | DOI | MR

[13] R. Stanley, “Binomial posets, Möbius inversion, and permutation enumeration”, J. Combin. Theory Ser. A, 20:3 (1976), 336–356 | DOI | MR | Zbl

[14] N. V. Tsilevich, A. M. Vershik, “The serpentine representation of the infinite symmetric group and the basic representation of the affine Lie algebra $\widehat{\mathfrak{sl}_2}$”, Lett. Math. Phys., 105:1 (2015), 11–25 | DOI | MR | Zbl