Multiplicities of Maxwell sets of Pham singularities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 73-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-sided estimate of local multiplicities of Maxwell sets of isolated singularities of smooth functions is proved. This estimate is sharp for semi-homogeneous functions.
Keywords: Maxwell set, caustic, isolated singularity.
@article{FAA_2016_50_3_a5,
     author = {V. A. Vassiliev},
     title = {Multiplicities of {Maxwell} sets of {Pham} singularities},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {73--76},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a5/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Multiplicities of Maxwell sets of Pham singularities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 73
EP  - 76
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a5/
LA  - ru
ID  - FAA_2016_50_3_a5
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Multiplicities of Maxwell sets of Pham singularities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 73-76
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a5/
%G ru
%F FAA_2016_50_3_a5
V. A. Vassiliev. Multiplicities of Maxwell sets of Pham singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 73-76. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a5/

[1] V. I. Arnold, V. A. Vasilev, V. V. Goryunov, O. V. Lyashko, Osobennosti II. Klassifikatsiya i prilozheniya, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 39, VINITI, M., 1989 | MR | Zbl

[2] D. N. Bernshtein, A. G. Kushnirenko, A. G. Khovanskii, UMN, 31:3 (1976), 201–202 | MR | Zbl

[3] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[4] V. A. Vassiliev, Applied Picard–Lefschetz theory, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[5] V. A. Vassiliev, Arnold Math. J., 1:2 (2015), 201–210 | DOI | MR