Virasoro singular vectors
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an explicit formula for the series $S_{2,p}(t)$ of Virasoro singular vectors.
Keywords: singular vectors, graded Lie algebras, free resolution, representation, cohomology.
@article{FAA_2016_50_3_a4,
     author = {D. V. Millionshchikov},
     title = {Virasoro singular vectors},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a4/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Virasoro singular vectors
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 66
EP  - 72
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a4/
LA  - ru
ID  - FAA_2016_50_3_a4
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Virasoro singular vectors
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 66-72
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a4/
%G ru
%F FAA_2016_50_3_a4
D. V. Millionshchikov. Virasoro singular vectors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 66-72. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a4/

[1] M. Bauer, Ph. Di Francesco, C. Itzykson, J.-B. Zuber, “Covariant differential equations and singular vectors in Virasoro representations”, Nuclear Phys. B, 362:3 (1991), 515–562 | DOI | MR | Zbl

[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional conformal field theory”, Nuclear Physics B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[3] L. Benoit, Y. Saint-Aubin, “Degenerate conformal field theories and explicit expressions for some null vectors”, Phys. Lett. B, 215:3 (1988), 517–522 | DOI | MR | Zbl

[4] B. L. Feigin, D. B. Fuks, “Kososimmetricheskie invariantnye differentsialnye operatory na pryamoi i moduli Verma nad algebroi Virasoro”, Funkts. analiz i ego pril., 16:2 (1982), 47–63 | MR | Zbl

[5] B. L. Feigin, D. B. Fuchs, “Verma modules over Virasoro algebra”, Lecture Notes in Math., 1060, 1984, 230–245 | DOI | MR | Zbl

[6] B. L. Feigin, D. B. Fuchs, “Representations of the Virasoro algebra”, Representations of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon Breach, New York, 1990, 465–554 | MR

[7] D. B. Fuchs, “Singular vectors over the Virasoro algebra and extended Verma modules”, Adv. Soviet Math., 17, Amer. Math. Soc., Providence, RI, 1993, 65–74 | MR | Zbl

[8] V. G. Kac, “Contravariant form for infinite-dimensional Lie algebras”, Lecture Notes in Phys. B, 94, 1979, 441–445 | DOI | MR | Zbl

[9] A. Rocha-Carridi, N. R. Wallach, “Characters of irreducuble representations of the Lie algebra of vector fields on the circle”, Invent. Math., 72:1 (1983), 57–75 | DOI | MR