Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_3_a4, author = {D. V. Millionshchikov}, title = {Virasoro singular vectors}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {66--72}, publisher = {mathdoc}, volume = {50}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a4/} }
D. V. Millionshchikov. Virasoro singular vectors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 66-72. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a4/
[1] M. Bauer, Ph. Di Francesco, C. Itzykson, J.-B. Zuber, “Covariant differential equations and singular vectors in Virasoro representations”, Nuclear Phys. B, 362:3 (1991), 515–562 | DOI | MR | Zbl
[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional conformal field theory”, Nuclear Physics B, 241:2 (1984), 333–380 | DOI | MR | Zbl
[3] L. Benoit, Y. Saint-Aubin, “Degenerate conformal field theories and explicit expressions for some null vectors”, Phys. Lett. B, 215:3 (1988), 517–522 | DOI | MR | Zbl
[4] B. L. Feigin, D. B. Fuks, “Kososimmetricheskie invariantnye differentsialnye operatory na pryamoi i moduli Verma nad algebroi Virasoro”, Funkts. analiz i ego pril., 16:2 (1982), 47–63 | MR | Zbl
[5] B. L. Feigin, D. B. Fuchs, “Verma modules over Virasoro algebra”, Lecture Notes in Math., 1060, 1984, 230–245 | DOI | MR | Zbl
[6] B. L. Feigin, D. B. Fuchs, “Representations of the Virasoro algebra”, Representations of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon Breach, New York, 1990, 465–554 | MR
[7] D. B. Fuchs, “Singular vectors over the Virasoro algebra and extended Verma modules”, Adv. Soviet Math., 17, Amer. Math. Soc., Providence, RI, 1993, 65–74 | MR | Zbl
[8] V. G. Kac, “Contravariant form for infinite-dimensional Lie algebras”, Lecture Notes in Phys. B, 94, 1979, 441–445 | DOI | MR | Zbl
[9] A. Rocha-Carridi, N. R. Wallach, “Characters of irreducuble representations of the Lie algebra of vector fields on the circle”, Invent. Math., 72:1 (1983), 57–75 | DOI | MR