Automorphisms of the solution spaces of special double-confluent Heun equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 12-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two new linear operators determining automorphisms of the solution space of a special double-confluent Heun equation in the general case are obtained. This equation has two singular points, both of which are irregular. The obtained result is applied to solve the nonlinear equation of the resistively shunted junction model for an overdamped Josephson junction in superconductors. The new operators are explicitly expressed in terms of structural polynomials, for which recursive computational algorithms are constructed. Two functional equations for the solutions of the special double-confluent Heun equation are found.
Keywords: special functions, automorphisms, functional equations.
Mots-clés : double-confluent Heun equation, solution space
@article{FAA_2016_50_3_a1,
     author = {V. M. Buchstaber and S. I. Tertychnyi},
     title = {Automorphisms of the solution spaces of special double-confluent {Heun} equations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {12--33},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. I. Tertychnyi
TI  - Automorphisms of the solution spaces of special double-confluent Heun equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 12
EP  - 33
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a1/
LA  - ru
ID  - FAA_2016_50_3_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. I. Tertychnyi
%T Automorphisms of the solution spaces of special double-confluent Heun equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 12-33
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a1/
%G ru
%F FAA_2016_50_3_a1
V. M. Buchstaber; S. I. Tertychnyi. Automorphisms of the solution spaces of special double-confluent Heun equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 12-33. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a1/

[1] V. M. Bukhshtaber, O. I. Karpov, S. I. Tertychnyi, “Sistema na tore, modeliruyuschaya dinamiku perekhoda Dzhozefsona”, UMN, 67:1 (2012), 181–182 | DOI | MR | Zbl

[2] V. M. Bukhshtaber, S. I. Tertychnyi, “Semeistvo yavnykh reshenii uravneniya rezistivnoi modeli perekhoda Dzhozefsona”, TMF, 176:2 (2013), 163–188 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, S. I. Tertychnyi, “Golomorfnye resheniya dvazhdy konflyuentnogo uravneniya Goina, assotsiirovannogo s RSJ-modelyu perekhoda Dzhozefsona”, TMF, 182:3 (2015), 373–404 | DOI | MR | Zbl

[4] A. Barone, Dzh. Paterno, Effekt Dzhozefsona. Fizika i primenenie, Mir, M., 1984

[5] R. Foote, “Geometry of the Prytz planimeter”, Reports Math. Physics, 42 (1998), 249–271 | DOI | MR | Zbl

[6] R. L. Foote, M. Levi, S. Tabachnikov, Tractrices, Bicycle Tire Tracks, Hatchet Planimeters, and a 100-year-old Conjecture, arXiv: 1207.0834v1 | MR

[7] B. D. Josephson, “Possible new effects in superconductive tunnelling”, Phys. Lett., 1 (1962), 251–253 | DOI | Zbl

[8] D. E. McCumber, “Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions”, J. Appl. Phys., 39 (1968), 3113–3118 | DOI

[9] V. V. Shmidt, Vvedenie v fiziku sverkhprovodnikov, Izd. 2-e, MSNMO, M., 2000

[10] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Heun's Diffrential Equations, Part C, ed. Ronveaux, Oxford Univ. Press, Oxford–New York, 1995 | MR | Zbl

[11] W. C. Stewart, “Current-voltage characteristics of Josephson junctions”, Appl. Phys. Lett., 12 (1968), 277–280 | DOI

[12] S. I. Tertychniy, The modelling of a Josephson junction and Heun polynomials, arXiv: math-ph/0601064

[13] The Heun Project http://theheunproject.org/bibliography.html