On the Sphericity of the Subgroup $\operatorname{PSL}_2(\mathbb{R})$ in the Group of Diffeomorphisms of the Circle
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the group $\operatorname{PSL}_2(\mathbb{R})$ is a spherical subgroup in the group of $C^3$-diffeomorphisms of the circle.
Keywords: spherical subgroup, spherical representation, group of diffeomorphisms of the circle, Schwarzian derivative.
@article{FAA_2016_50_2_a9,
     author = {Yu. A. Neretin},
     title = {On the {Sphericity} of the {Subgroup} $\operatorname{PSL}_2(\mathbb{R})$ in the {Group} of {Diffeomorphisms} of the {Circle}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a9/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the Sphericity of the Subgroup $\operatorname{PSL}_2(\mathbb{R})$ in the Group of Diffeomorphisms of the Circle
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 91
EP  - 94
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a9/
LA  - ru
ID  - FAA_2016_50_2_a9
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the Sphericity of the Subgroup $\operatorname{PSL}_2(\mathbb{R})$ in the Group of Diffeomorphisms of the Circle
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 91-94
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a9/
%G ru
%F FAA_2016_50_2_a9
Yu. A. Neretin. On the Sphericity of the Subgroup $\operatorname{PSL}_2(\mathbb{R})$ in the Group of Diffeomorphisms of the Circle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a9/

[1] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR

[2] R. E. Howe, C. C. Moore, J. Funct. Anal., 32:1 (1979), 72–96 | DOI | MR | Zbl

[3] H. Inci, T. Kappeler, P. Topalov, Mem. Amer. Math. Soc., 226, no. 1062, 2013 | MR

[4] Yu. A. Neretin, Dokl. AN SSSR, 294:1 (1987), 37–41 | MR | Zbl

[5] Yu. A. Neretin, Kategorii simmetrii i beskonechnye gruppy, URSS, M., 1998

[6] V. Ovsienko, S. Tabachnikov, Proektivnaya differentsialnaya geometriya. Staroe i novoe, MTsNMO, M., 2008