Factorization Properties of Subdiagonal Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 77-81
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal{M}$ be a von Neumann algebra equipped with a normal finite faithful normalized trace $\tau$, and let $\mathcal{A}$ be a tracial subalgebra of $\mathcal{M}$. Let $E$ be a symmetric quasi-Banach space on $[0,1]$. We show that $\mathcal{A}$ has an $L_E(\mathcal{M})$-factorization if and only if $\mathcal{A}$ is a subdiagonal algebra.
Keywords:
von Neumann algebra, subdiagonal algebra, noncommutative symmetric space.
Mots-clés : tracial subalgebra
Mots-clés : tracial subalgebra
@article{FAA_2016_50_2_a5,
author = {T. N. Bekjan and K. N. Ospanov},
title = {Factorization {Properties} of {Subdiagonal} {Algebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {77--81},
publisher = {mathdoc},
volume = {50},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/}
}
T. N. Bekjan; K. N. Ospanov. Factorization Properties of Subdiagonal Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 77-81. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/