Factorization Properties of Subdiagonal Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 77-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{M}$ be a von Neumann algebra equipped with a normal finite faithful normalized trace $\tau$, and let $\mathcal{A}$ be a tracial subalgebra of $\mathcal{M}$. Let $E$ be a symmetric quasi-Banach space on $[0,1]$. We show that $\mathcal{A}$ has an $L_E(\mathcal{M})$-factorization if and only if $\mathcal{A}$ is a subdiagonal algebra.
Keywords: von Neumann algebra, subdiagonal algebra, noncommutative symmetric space.
Mots-clés : tracial subalgebra
@article{FAA_2016_50_2_a5,
     author = {T. N. Bekjan and K. N. Ospanov},
     title = {Factorization {Properties} of {Subdiagonal} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--81},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/}
}
TY  - JOUR
AU  - T. N. Bekjan
AU  - K. N. Ospanov
TI  - Factorization Properties of Subdiagonal Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 77
EP  - 81
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/
LA  - ru
ID  - FAA_2016_50_2_a5
ER  - 
%0 Journal Article
%A T. N. Bekjan
%A K. N. Ospanov
%T Factorization Properties of Subdiagonal Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 77-81
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/
%G ru
%F FAA_2016_50_2_a5
T. N. Bekjan; K. N. Ospanov. Factorization Properties of Subdiagonal Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 77-81. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/