Factorization Properties of Subdiagonal Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 77-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{M}$ be a von Neumann algebra equipped with a normal finite faithful normalized trace $\tau$, and let $\mathcal{A}$ be a tracial subalgebra of $\mathcal{M}$. Let $E$ be a symmetric quasi-Banach space on $[0,1]$. We show that $\mathcal{A}$ has an $L_E(\mathcal{M})$-factorization if and only if $\mathcal{A}$ is a subdiagonal algebra.
Keywords: von Neumann algebra, subdiagonal algebra, noncommutative symmetric space.
Mots-clés : tracial subalgebra
@article{FAA_2016_50_2_a5,
     author = {T. N. Bekjan and K. N. Ospanov},
     title = {Factorization {Properties} of {Subdiagonal} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--81},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/}
}
TY  - JOUR
AU  - T. N. Bekjan
AU  - K. N. Ospanov
TI  - Factorization Properties of Subdiagonal Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 77
EP  - 81
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/
LA  - ru
ID  - FAA_2016_50_2_a5
ER  - 
%0 Journal Article
%A T. N. Bekjan
%A K. N. Ospanov
%T Factorization Properties of Subdiagonal Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 77-81
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/
%G ru
%F FAA_2016_50_2_a5
T. N. Bekjan; K. N. Ospanov. Factorization Properties of Subdiagonal Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 77-81. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a5/

[1] W. B. Arveson, Amer. J. Math., 89 (1967), 578–642 | DOI | MR | Zbl

[2] T. N. Bekjan, Integral Equations Operator Theory, 81 (2015), 191–212 | DOI | MR | Zbl

[3] T. N. Bekjan, Proc. Amer. Math. Soc., 139:3 (2011), 1121–1126 | DOI | MR | Zbl

[4] D. P. Blecher, L. E. Labuschagne, Trans. Amer. Math. Soc., 355:4 (2003), 1621–1646 | DOI | MR | Zbl

[5] D. P. Blecher, L. E. Labuschagne, Integr. Equat. Oper. Theory, 56 (2006), 301–321 | DOI | MR | Zbl

[6] P. G. Dodds, T. K. Dodds, B. de Pager, Math. Z., 201:4 (1989), 583–587 | DOI | MR

[7] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[8] J. Lindentrauss, L. Tzafriri, Classical Banach Space, II, Springer-Verlag, Berlin–New York, 1979 | MR

[9] M. Marsalli, G. West, J. Operator Theory, 40:2 (1997), 339–355 | MR

[10] N. Randrianantoanina, J. Austral. Math. Soc. (Ser. A), 65:3 (1999), 388–404 | DOI | MR

[11] Q. Xu, Math. Proc. Camb. Phil. Soc., 109 (1991), 541–563 | DOI | MR | Zbl