An Algebra of Continuous Functions as a Continuous Envelope of Its Subalgebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 75-77
Cet article a éte moissonné depuis la source Math-Net.Ru
To an arbitrary involutive stereotype algebra $A$ the continuous envelope operation assigns its nearest, in some sense, involutive stereotype algebra $\operatorname{\sf{Env}}_{\mathcal C}A$ so that homomorphisms to various $C^*$-algebras separate the elements of $\operatorname{\sf{Env}}_{\mathcal C}A$ but do not distinguish between the properties of $A$ and those of $\operatorname{\sf{Env}}_{\mathcal C}A$. If $A$ is an involutive stereotype subalgebra in the algebra ${\mathcal C}(M)$ of continuous functions on a paracompact locally compact topological space $M$, then, for ${\mathcal C}(M)$ to be a continuous envelope of $A$, i.e., $\operatorname{\sf{Env}}_{\mathcal C}A={\mathcal C}(M)$, it is necessary but not sufficient that $A$ be dense in ${\mathcal C}(M)$. In this note we announce a necessary and sufficient condition for this: the involutive spectrum of $A$ must coincide with $M$ up to a weakening of the topology such that the system of compact subsets in $M$ and the topology on each compact subset remains the same.
Keywords:
$C^*$-algebra, stereotype algebra.
@article{FAA_2016_50_2_a4,
author = {S. S. Akbarov},
title = {An {Algebra} of {Continuous} {Functions} as a {Continuous} {Envelope} of {Its} {Subalgebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {75--77},
year = {2016},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a4/}
}
S. S. Akbarov. An Algebra of Continuous Functions as a Continuous Envelope of Its Subalgebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 75-77. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a4/
[1] S. S. Akbarov, Fundament. i prikl. matem., 14:1 (2008), 3–178, arXiv: 0806.3205v3 | MR
[2] S. S. Akbarov, Diss. Math., 513:1 (2016), 1–188, arXiv: 1110.2013v11 | MR
[3] S. S. Akbarov, Continuous and smooth envelopes of topological algebras, arXiv: 1303.2424v5
[4] S. S. Akbarov, J. Math. Sci., 113:2 (2003), 179–349 | DOI | MR | Zbl
[5] J. Kuznetsova, J. Operator Theory, 69:2 (2013), 571–600, arXiv: 0907.1409 | DOI | MR | Zbl