Discriminating Potentials of Measures on Certain Quasi-normed Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 1-19
Voir la notice de l'article provenant de la source Math-Net.Ru
A uniqueness theorem for a convolution equation is proved for a class of infinite-dimensional spaces larger than the class of Banach spaces, in particular, for $L_p$-spaces with $p>0$.
Keywords:
potential, quasi-normed group, Cartan–Levin method,
analytic function
Mots-clés : Laplace–Fourier transform.
Mots-clés : Laplace–Fourier transform.
@article{FAA_2016_50_2_a0,
author = {E. A. Gorin},
title = {Discriminating {Potentials} of {Measures} on {Certain} {Quasi-normed} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--19},
publisher = {mathdoc},
volume = {50},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/}
}
E. A. Gorin. Discriminating Potentials of Measures on Certain Quasi-normed Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 1-19. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/