Discriminating Potentials of Measures on Certain Quasi-normed Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 1-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A uniqueness theorem for a convolution equation is proved for a class of infinite-dimensional spaces larger than the class of Banach spaces, in particular, for $L_p$-spaces with $p>0$.
Keywords: potential, quasi-normed group, Cartan–Levin method, analytic function
Mots-clés : Laplace–Fourier transform.
@article{FAA_2016_50_2_a0,
     author = {E. A. Gorin},
     title = {Discriminating {Potentials} of {Measures} on {Certain} {Quasi-normed} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/}
}
TY  - JOUR
AU  - E. A. Gorin
TI  - Discriminating Potentials of Measures on Certain Quasi-normed Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 1
EP  - 19
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/
LA  - ru
ID  - FAA_2016_50_2_a0
ER  - 
%0 Journal Article
%A E. A. Gorin
%T Discriminating Potentials of Measures on Certain Quasi-normed Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 1-19
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/
%G ru
%F FAA_2016_50_2_a0
E. A. Gorin. Discriminating Potentials of Measures on Certain Quasi-normed Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 1-19. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/

[1] E. A. Gorin, A. L. Koldobskii, “O potentsialakh mer v banakhovykh prostranstvakh”, Sib. matem. zh., 28:1 (1987), 65–80 | MR | Zbl

[2] D. Preiss, J. Tis̆er, “Measures in Banach spaces are determined by their values on balls”, Mathematica, 38:2 (1991), 391–397 | MR | Zbl

[3] E. A. Gorin, “Remarks on the Preiss–Tis̆er theorem on balls”, Russian J. Math. Phys., 12:2 (2005), 180–185 | MR | Zbl

[4] S. V. Selivanova, “Kasatelnyi konus k kvazimetricheskomu prostranstvu s rastyazheniyami”, Sib. matem. zh., 51:2 (2010), 388–403 | MR | Zbl

[5] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1968

[6] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz, t. I, Nauka, M., 1975 | MR

[7] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[8] E. A. Riss, “O merakh, sovpadayuschikh na sharakh”, Zap. nauchn. sem. LOMI, 177 (1989), 122–128 | MR

[9] W. Linde, “Uniqueness theorems in $L_r$ and $C_0(\Omega)$”, Math. Ann., 274:4 (1986), 617–626 | DOI | MR | Zbl

[10] E. A. Gorin, “Lemma A. Kartana po B. Ya. Levinu s razlichnymi prilozheniyami”, Zhurnal matematicheskoi fiziki, analiza, geometrii, 3:1 (2007), 1–26 | MR | Zbl