Discriminating Potentials of Measures on Certain Quasi-normed Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 1-19

Voir la notice de l'article provenant de la source Math-Net.Ru

A uniqueness theorem for a convolution equation is proved for a class of infinite-dimensional spaces larger than the class of Banach spaces, in particular, for $L_p$-spaces with $p>0$.
Keywords: potential, quasi-normed group, Cartan–Levin method, analytic function
Mots-clés : Laplace–Fourier transform.
@article{FAA_2016_50_2_a0,
     author = {E. A. Gorin},
     title = {Discriminating {Potentials} of {Measures} on {Certain} {Quasi-normed} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/}
}
TY  - JOUR
AU  - E. A. Gorin
TI  - Discriminating Potentials of Measures on Certain Quasi-normed Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 1
EP  - 19
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/
LA  - ru
ID  - FAA_2016_50_2_a0
ER  - 
%0 Journal Article
%A E. A. Gorin
%T Discriminating Potentials of Measures on Certain Quasi-normed Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 1-19
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/
%G ru
%F FAA_2016_50_2_a0
E. A. Gorin. Discriminating Potentials of Measures on Certain Quasi-normed Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 2, pp. 1-19. http://geodesic.mathdoc.fr/item/FAA_2016_50_2_a0/