Holomorphic Minorants of Plurisubharmonic Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 76-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi$ be a plurisubharmonic function on a pseudoconvex domain $D$ in an $n$-dimensional complex space. We show that there exists a nonzero holomorphic function $f$ on $D$ such that some local mean value of $\varphi$ with logarithmic additional terms majorizes $\log |f|$. A similar problem is discussed for a locally integrable function on $D$ in terms of balayage of positive measures.
Keywords: holomorphic function, plurisubharmonicity, Jensen inequality, mean value in the ball.
Mots-clés : minorant, balayage
@article{FAA_2016_50_1_a6,
     author = {T. Yu. Baiguskarov and B. N. Khabibullin},
     title = {Holomorphic {Minorants} of {Plurisubharmonic} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {76--79},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a6/}
}
TY  - JOUR
AU  - T. Yu. Baiguskarov
AU  - B. N. Khabibullin
TI  - Holomorphic Minorants of Plurisubharmonic Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 76
EP  - 79
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a6/
LA  - ru
ID  - FAA_2016_50_1_a6
ER  - 
%0 Journal Article
%A T. Yu. Baiguskarov
%A B. N. Khabibullin
%T Holomorphic Minorants of Plurisubharmonic Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 76-79
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a6/
%G ru
%F FAA_2016_50_1_a6
T. Yu. Baiguskarov; B. N. Khabibullin. Holomorphic Minorants of Plurisubharmonic Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 76-79. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a6/

[1] E. Bombieri, Invent. Math., 10 (1970), 248–263 | DOI | MR

[2] L. Hörmander, Notions of Convexity, Birkhäuser, Boston, 1994 | MR | Zbl

[3] P. Lelon, L. Gruman, Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR

[4] B. N. Khabibullin, Izv. RAN, cer. matem., 65:5 (2001), 167–190 | DOI | MR | Zbl

[5] B. N. Khabibullin, Izv. AN SSSR, cer. matem., 55:5 (1991), 1101–1123 | MR

[6] O. V. Epifanov, Matem. zametki, 51:1 (1992), 83–92 | MR | Zbl

[7] T. Yu. Baiguskarov, G. R. Talipova, B. N. Khabibullin, Algebra i analiz, 2016 (to appear)

[8] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980 | MR

[9] B. N. Khabibullin, T. Yu. Baiguskarov, Matem. zametki, 99:4 (2016), 591–605 | DOI