Holomorphic Minorants of Plurisubharmonic Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 76-79
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\varphi$ be a plurisubharmonic function on a pseudoconvex domain $D$ in an $n$-dimensional complex space. We show that there exists a nonzero holomorphic function $f$ on $D$ such that some local mean value of $\varphi$ with logarithmic additional terms majorizes $\log |f|$. A similar problem is discussed for a locally integrable function on $D$ in terms of balayage of positive measures.
Keywords:
holomorphic function, plurisubharmonicity, Jensen inequality, mean value in the ball.
Mots-clés : minorant, balayage
Mots-clés : minorant, balayage
@article{FAA_2016_50_1_a6,
author = {T. Yu. Baiguskarov and B. N. Khabibullin},
title = {Holomorphic {Minorants} of {Plurisubharmonic} {Functions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {76--79},
year = {2016},
volume = {50},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a6/}
}
T. Yu. Baiguskarov; B. N. Khabibullin. Holomorphic Minorants of Plurisubharmonic Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 76-79. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a6/
[1] E. Bombieri, Invent. Math., 10 (1970), 248–263 | DOI | MR
[2] L. Hörmander, Notions of Convexity, Birkhäuser, Boston, 1994 | MR | Zbl
[3] P. Lelon, L. Gruman, Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR
[4] B. N. Khabibullin, Izv. RAN, cer. matem., 65:5 (2001), 167–190 | DOI | MR | Zbl
[5] B. N. Khabibullin, Izv. AN SSSR, cer. matem., 55:5 (1991), 1101–1123 | MR
[6] O. V. Epifanov, Matem. zametki, 51:1 (1992), 83–92 | MR | Zbl
[7] T. Yu. Baiguskarov, G. R. Talipova, B. N. Khabibullin, Algebra i analiz, 2016 (to appear)
[8] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980 | MR
[9] B. N. Khabibullin, T. Yu. Baiguskarov, Matem. zametki, 99:4 (2016), 591–605 | DOI