Commuting Differential Operators of Rank 2 with Polynomial Coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Self-adjoint commuting differential operators with polynomial coefficients are considered. These operators form a commutative subalgebra of the first Weyl algebra. New examples of commuting differential operators of rank $2$ are found.
Keywords: differential operator, first Weyl algebra, Krichever–Novikov equation, Dixmier hypothesis, nonlinear equation, operator of nontrivial rank.
@article{FAA_2016_50_1_a5,
     author = {V. S. Oganesyan},
     title = {Commuting {Differential} {Operators} of {Rank} 2 with {Polynomial} {Coefficients}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a5/}
}
TY  - JOUR
AU  - V. S. Oganesyan
TI  - Commuting Differential Operators of Rank 2 with Polynomial Coefficients
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 67
EP  - 75
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a5/
LA  - ru
ID  - FAA_2016_50_1_a5
ER  - 
%0 Journal Article
%A V. S. Oganesyan
%T Commuting Differential Operators of Rank 2 with Polynomial Coefficients
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 67-75
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a5/
%G ru
%F FAA_2016_50_1_a5
V. S. Oganesyan. Commuting Differential Operators of Rank 2 with Polynomial Coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a5/

[1] J. L. Burchnall, I. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc. (2), 21:1 (1923), 420–440 | DOI | MR | Zbl

[2] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[3] I. M. Krichever, “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[4] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6(216) (1980), 47–68 | MR | Zbl

[5] O. I. Mokhov, “Kommutiruyuschie obyknovennye differentsialnye operatory ranga $3$, otvechayuschie ellipticheskoi krivoi”, UMN, 37:4(226) (1982), 169–170 | MR | Zbl

[6] O. I. Mokhov, “Kommutiruyuschie differentsialnye operatory ranga $3$ i nelineinye uravneniya”, Izv. AN SSSR, ser. matem., 53:6 (1989), 1291–1315

[7] A. E. Mironov, “Self-adjoint commuting differential operators and commutative subalgebras of the Weyl algebra”, Invent. Math., 197 (2014), 417–431 | DOI | MR | Zbl

[8] J. Dixmier, “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | DOI | MR | Zbl

[9] A. E. Mironov, “Periodic and rapid decay rank two self-adjoint commuting differential operators”, Amer. Math. Soc. Transl., Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 309–322, arXiv: 1302.5735 | MR

[10] O. I. Mokhov, “O kommutativnykh podalgebrakh algebr Veilya, svyazannykh s kommutiruyuschimi operatorami proizvolnogo ranga i roda”, Matem. zametki, 94:2 (2013), 314–316 | DOI | MR | Zbl

[11] O. I. Mokhov, “Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coefficients”, Amer. Math. Soc. Trans., Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 323–336 | MR | Zbl