Commuting Differential Operators of Rank 2 with Polynomial Coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 67-75
Voir la notice de l'article provenant de la source Math-Net.Ru
Self-adjoint commuting differential operators with polynomial coefficients are considered. These operators form a commutative subalgebra of the first Weyl algebra. New examples of commuting differential operators of rank $2$ are found.
Keywords:
differential operator, first Weyl algebra, Krichever–Novikov equation, Dixmier hypothesis, nonlinear equation,
operator of nontrivial rank.
@article{FAA_2016_50_1_a5,
author = {V. S. Oganesyan},
title = {Commuting {Differential} {Operators} of {Rank} 2 with {Polynomial} {Coefficients}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {67--75},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a5/}
}
V. S. Oganesyan. Commuting Differential Operators of Rank 2 with Polynomial Coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/FAA_2016_50_1_a5/