Relative Index Theorem in $K$-Homology
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 85-90
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove an analog of Gromov–Lawson type relative index theorems for $K$-homology classes.
Keywords:
Fredholm module, cutting and pasting, relative index, $K$-homology.
@article{FAA_2015_49_4_a8,
author = {V. E. Nazaikinskii},
title = {Relative {Index} {Theorem} in $K${-Homology}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--90},
year = {2015},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a8/}
}
V. E. Nazaikinskii. Relative Index Theorem in $K$-Homology. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a8/
[1] P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[2] M. Gromov, H. B. Lawson Jr., Publ. Math. IHES, 58:1 (1983), 83–196 | DOI | Zbl
[3] V. E. Nazaikinskii, B. Yu. Sternin, Funkts. analiz i ego pril., 35:2 (2001), 37–52 | DOI | MR | Zbl
[4] V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, Elliptic Theory on Singular Manifolds, Chapman Hall/CRC, Boca Raton, FL, 2005 | MR
[5] U. Bunke, Math. Ann., 303:2 (1995), 241–279 | DOI | MR | Zbl
[6] N. Higson, J. Roe, Analytic $K$-Homology, Oxford University Press, Oxford, 2000 | MR | Zbl