Relative Index Theorem in $K$-Homology
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 85-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analog of Gromov–Lawson type relative index theorems for $K$-homology classes.
Keywords: Fredholm module, cutting and pasting, relative index, $K$-homology.
@article{FAA_2015_49_4_a8,
     author = {V. E. Nazaikinskii},
     title = {Relative {Index} {Theorem} in $K${-Homology}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a8/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
TI  - Relative Index Theorem in $K$-Homology
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 85
EP  - 90
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a8/
LA  - ru
ID  - FAA_2015_49_4_a8
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%T Relative Index Theorem in $K$-Homology
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 85-90
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a8/
%G ru
%F FAA_2015_49_4_a8
V. E. Nazaikinskii. Relative Index Theorem in $K$-Homology. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a8/