Singularities of~$A$ and~$B$ Types in Asymptotic Analysis of Solutions of a Parabolic Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 82-85
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy problem for a quasi-linear parabolic equation with a small parameter multiplying a higher derivative is considered in two cases where the solution of the limit problem has a point of gradient catastrophe.
The integrals determining the leading approximation correspond to the Lagrange singularity of type $A_3$
and the boundary singularity of type $B_3$. For another choice of the initial function, singular points corresponding to $A_{2n+1}$ and $B_{2n+1}$ with arbitrary $n\ge 1$ are obtained.
Mots-clés :
parabolic equation
Keywords: asymptotics, singular points.
Keywords: asymptotics, singular points.
@article{FAA_2015_49_4_a7,
author = {S. V. Zakharov},
title = {Singularities of~$A$ and~$B$ {Types} in {Asymptotic} {Analysis} of {Solutions} of a {Parabolic} {Equation}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--85},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a7/}
}
TY - JOUR AU - S. V. Zakharov TI - Singularities of~$A$ and~$B$ Types in Asymptotic Analysis of Solutions of a Parabolic Equation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 82 EP - 85 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a7/ LA - ru ID - FAA_2015_49_4_a7 ER -
S. V. Zakharov. Singularities of~$A$ and~$B$ Types in Asymptotic Analysis of Solutions of a Parabolic Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 82-85. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a7/