Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2015_49_4_a1, author = {A. M. Vershik}, title = {Standardness as an {Invariant} {Formulation} of {Independence}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {18--32}, publisher = {mathdoc}, volume = {49}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a1/} }
A. M. Vershik. Standardness as an Invariant Formulation of Independence. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 18-32. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a1/
[1] A. M. Vershik, “Sluchainye metricheskie prostranstva i universalnost”, UMN, 59:2(356) (2004), 65–104 | DOI | MR
[2] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | MR | Zbl
[3] A. Vershik, “Zadacha o tsentralnykh merakh na prostranstve putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | MR | Zbl
[4] A. Vershik, “Ubyvayuschie posledovatelnosti izmerimykh razbienii i ikh primeneniya”, Dokl. AN SSSR, 193:4 (1970), 748–751 | Zbl
[5] A. Vershik, Approksimatsiya v teorii mery, Dokt. diss., LGU
[6] A. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbieniis”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl
[7] C. Hoffman, D. Rudolph, “A dyadic endomorphism which is Bernoulli but not standard”, Israel J. Math., 130 (2002), 365–379 | DOI | MR | Zbl
[8] A. Vershik, A. Gorbulskii, “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, TVP, 52:3 (2007), 446–467 | DOI | MR
[9] A. Vershik, “Teorema o lakunarnom izomorfizme monotonnykh posledovatelnostei razbienii”, Funkts. analiz i ego pril., 2:3 (1968), 17–21 | MR | Zbl
[10] N. Viner, Nelineinye zadachi v teorii sluchainykh protsessov, IL, M., 1961
[11] E. Janvresse, S. Laurent, T. De La Rue, Standardness of monotonic Markov filtrations, arXiv: 1501.02166
[12] A. Vershik, “Vnutrennyaya metrika na graduirovannykh grafakh, standartnost i invariantnye mery”, Zap. nauchn. sem. POMI, 421 (2014), 58–67 | Zbl
[13] M. Gromov, Metric structure for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 1998 | MR
[14] A. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–28 | DOI | MR
[15] D. S. Ornstein, “Imbedding Bernoulli shifts in flows”, Contributions to Ergodic Theory and Probability, Springer-Verlag, Berlin, 1970, 178–218 | DOI | MR
[16] A. Vershik, “Random and universal metric spaces”, Fundamental Mathematics Today, Independent University of Moscow, 2003, 54–88 | MR