Standardness as an Invariant Formulation of Independence
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a homogeneous standard filtration of $\sigma$-algebras was introduced by the author in 1970. The main theorem asserted that a homogeneous filtration is standard, i.e., generated by a sequence of independent random variables (is Bernoulli), if and only if a standardness criterion is satisfied. The author has recently generalized the notion of standardness to arbitrary filtrations. In this paper we give detailed definitions and characterizations of Markov standard filtrations. The notion of standardness is essential for applications of probabilistic, combinatorial, and algebraic nature. At the end of the paper we present new notions related to nonstandard filtrations.
Mots-clés : filtration
Keywords: standardness, intrinsic metric, virtual metric space with measure.
@article{FAA_2015_49_4_a1,
     author = {A. M. Vershik},
     title = {Standardness as an {Invariant} {Formulation} of {Independence}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Standardness as an Invariant Formulation of Independence
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 18
EP  - 32
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a1/
LA  - ru
ID  - FAA_2015_49_4_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Standardness as an Invariant Formulation of Independence
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 18-32
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a1/
%G ru
%F FAA_2015_49_4_a1
A. M. Vershik. Standardness as an Invariant Formulation of Independence. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 4, pp. 18-32. http://geodesic.mathdoc.fr/item/FAA_2015_49_4_a1/

[1] A. M. Vershik, “Sluchainye metricheskie prostranstva i universalnost”, UMN, 59:2(356) (2004), 65–104 | DOI | MR

[2] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | MR | Zbl

[3] A. Vershik, “Zadacha o tsentralnykh merakh na prostranstve putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | MR | Zbl

[4] A. Vershik, “Ubyvayuschie posledovatelnosti izmerimykh razbienii i ikh primeneniya”, Dokl. AN SSSR, 193:4 (1970), 748–751 | Zbl

[5] A. Vershik, Approksimatsiya v teorii mery, Dokt. diss., LGU

[6] A. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbieniis”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl

[7] C. Hoffman, D. Rudolph, “A dyadic endomorphism which is Bernoulli but not standard”, Israel J. Math., 130 (2002), 365–379 | DOI | MR | Zbl

[8] A. Vershik, A. Gorbulskii, “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, TVP, 52:3 (2007), 446–467 | DOI | MR

[9] A. Vershik, “Teorema o lakunarnom izomorfizme monotonnykh posledovatelnostei razbienii”, Funkts. analiz i ego pril., 2:3 (1968), 17–21 | MR | Zbl

[10] N. Viner, Nelineinye zadachi v teorii sluchainykh protsessov, IL, M., 1961

[11] E. Janvresse, S. Laurent, T. De La Rue, Standardness of monotonic Markov filtrations, arXiv: 1501.02166

[12] A. Vershik, “Vnutrennyaya metrika na graduirovannykh grafakh, standartnost i invariantnye mery”, Zap. nauchn. sem. POMI, 421 (2014), 58–67 | Zbl

[13] M. Gromov, Metric structure for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 1998 | MR

[14] A. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–28 | DOI | MR

[15] D. S. Ornstein, “Imbedding Bernoulli shifts in flows”, Contributions to Ergodic Theory and Probability, Springer-Verlag, Berlin, 1970, 178–218 | DOI | MR

[16] A. Vershik, “Random and universal metric spaces”, Fundamental Mathematics Today, Independent University of Moscow, 2003, 54–88 | MR