A Characterization Theorem for a Generalized Radon Transform Arising in a Model of Mathematical Economics
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 57-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider the characterization problem for the profit function in a generalized model of a pure industry. We obtain a necessary and sufficient condition for a function to be representable as the profit function corresponding to a neoclassical production function at the micro-level.
Keywords: profit function, generalized Radon transform, characterization.
@article{FAA_2015_49_3_a3,
     author = {A. D. Agal'tsov},
     title = {A {Characterization} {Theorem} for a {Generalized} {Radon} {Transform} {Arising} in a {Model} of {Mathematical} {Economics}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {57--60},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a3/}
}
TY  - JOUR
AU  - A. D. Agal'tsov
TI  - A Characterization Theorem for a Generalized Radon Transform Arising in a Model of Mathematical Economics
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 57
EP  - 60
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a3/
LA  - ru
ID  - FAA_2015_49_3_a3
ER  - 
%0 Journal Article
%A A. D. Agal'tsov
%T A Characterization Theorem for a Generalized Radon Transform Arising in a Model of Mathematical Economics
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 57-60
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a3/
%G ru
%F FAA_2015_49_3_a3
A. D. Agal'tsov. A Characterization Theorem for a Generalized Radon Transform Arising in a Model of Mathematical Economics. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 57-60. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a3/

[1] A. D. Agaltsov, Trudy MFTI, 5:4 (20) (2013), 48–61

[2] A. D. Agaltsov, Trudy MFTI, 6:2 (22) (2014), 3–14

[3] S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley and Los Angeles, 1955 | MR | Zbl

[4] G. M. Henkin, A. A. Shananin, Transl. Math. Monographs, 81, Amer. Math. Soc., Providence, RI, 1990, 189–223 | DOI | MR

[5] A. A. Shananin, Matem. modelirovanie, 9:9 (1997), 117–127 | MR | Zbl