A Characterization Theorem for a Generalized Radon Transform Arising in a Model of Mathematical Economics
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 57-60
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper we consider the characterization problem for the profit function in a generalized model of a pure industry. We obtain a necessary and sufficient condition for a function to be representable as the profit function corresponding to a neoclassical production function at the micro-level.
Keywords:
profit function, generalized Radon transform, characterization.
@article{FAA_2015_49_3_a3,
author = {A. D. Agal'tsov},
title = {A {Characterization} {Theorem} for a {Generalized} {Radon} {Transform} {Arising} in a {Model} of {Mathematical} {Economics}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {57--60},
year = {2015},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a3/}
}
TY - JOUR AU - A. D. Agal'tsov TI - A Characterization Theorem for a Generalized Radon Transform Arising in a Model of Mathematical Economics JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 57 EP - 60 VL - 49 IS - 3 UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a3/ LA - ru ID - FAA_2015_49_3_a3 ER -
A. D. Agal'tsov. A Characterization Theorem for a Generalized Radon Transform Arising in a Model of Mathematical Economics. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 57-60. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a3/
[1] A. D. Agaltsov, Trudy MFTI, 5:4 (20) (2013), 48–61
[2] A. D. Agaltsov, Trudy MFTI, 6:2 (22) (2014), 3–14
[3] S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley and Los Angeles, 1955 | MR | Zbl
[4] G. M. Henkin, A. A. Shananin, Transl. Math. Monographs, 81, Amer. Math. Soc., Providence, RI, 1990, 189–223 | DOI | MR
[5] A. A. Shananin, Matem. modelirovanie, 9:9 (1997), 117–127 | MR | Zbl