Nonlocal Problems for the Vlasov--Poisson Equations in an Infinite Cylinder
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 91-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Vlasov–Poisson equations with an external magnetic field in an infinite cylinder for a two-component high-temperature plasma with initial conditions on the distribution densities of charged particles and nonlocal boundary condition on the electric field potential are considered. For sufficiently small initial distribution densities, the existence and uniqueness of a classical solution for which the distribution densities of charged particles are supported on an inner cylinder are proved.
Mots-clés : Vlasov–Poisson equations
Keywords: nonlocal problems.
@article{FAA_2015_49_3_a11,
     author = {A. L. Skubachevskii},
     title = {Nonlocal {Problems} for the {Vlasov--Poisson} {Equations} in an {Infinite} {Cylinder}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a11/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
TI  - Nonlocal Problems for the Vlasov--Poisson Equations in an Infinite Cylinder
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 91
EP  - 96
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a11/
LA  - ru
ID  - FAA_2015_49_3_a11
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%T Nonlocal Problems for the Vlasov--Poisson Equations in an Infinite Cylinder
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 91-96
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a11/
%G ru
%F FAA_2015_49_3_a11
A. L. Skubachevskii. Nonlocal Problems for the Vlasov--Poisson Equations in an Infinite Cylinder. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 3, pp. 91-96. http://geodesic.mathdoc.fr/item/FAA_2015_49_3_a11/

[1] A. A. Arsenev, Zh. vychisl. matem. i matem. fiz, 15:1 (1975), 136–147 | MR | Zbl

[2] R. L. Dobrushin, Funkts. analiz i ego pril., 13:2 (1979), 48–58 | MR | Zbl

[3] V. V. Kozlov, UMN, 63:4 (382) (2008), 93–130 | DOI | MR | Zbl

[4] V. P. Maslov, M. V. Fedoryuk, Matem. sb., 127 (169):4 (8) (1985), 445–475 | MR | Zbl

[5] K. Miyamoto, Osnovy fiziki plazmy i upravlyaemogo sinteza, Fizmatlit, M., 2007

[6] A. A. Samarskii, Differentsialnye uravneniya, 16:11 (1980), 1925–1935 | MR

[7] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi, ch. I”, Sovremennaya matematika. Fundamentalnye napravleniya, 26 (2007), 3–132, RUDN, M. ; “Неклассические краевые задачи, ч. II”, Современная математика. Фундаментальные направления, 33 (2009), 3–179, РУДН, М. | MR

[8] A. L. Skubachevskii, UMN, 69:2 (416) (2014), 107–148 | DOI | MR | Zbl

[9] J. Batt, J. Differential Equations, 25:3 (1977), 342–364 | DOI | MR | Zbl

[10] R. J. Di Perna, P.-L. Lions, Comm. Pure Appl. Math., 42:6 (1989), 729–757 | DOI | MR | Zbl

[11] Y. Guo, Indiana Univ. Math. J., 43:1 (1994), 255–320 | DOI | MR | Zbl

[12] H. J. Hwang, J. J. L. Velázquez, J. Differential Equations, 247:6 (2009), 1915–1948 | DOI | MR | Zbl

[13] K. Pfaffelmoser, J. Differential Equations, 95:2 (1992), 281–303 | DOI | MR | Zbl