On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 85-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The restrictions of the nonrelativistic energy operators $H_n$ of the relative motion of a system of $n$ identical particles with short-range interaction potentials to subspaces $M$ of functions with various permutation symmetries are considered. It is proved that, for each of these restrictions, there exists an infinite increasing sequence of numbers $N_j$, $j=1,2,\dots$, such that the discrete spectrum of each operator $H_{N_j}$ on $M$ is nonempty. The family $\{M\}$ of considered subspaces is, apparently, close to maximal among those which can be handled by the existing methods of study.
Keywords: many-particle Hamiltonian, discrete spectrum, permutation symmetry.
@article{FAA_2015_49_2_a9,
     author = {G. M. Zhislin},
     title = {On the discrete spectrum of the {Hamiltonians} of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--88},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a9/}
}
TY  - JOUR
AU  - G. M. Zhislin
TI  - On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 85
EP  - 88
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a9/
LA  - ru
ID  - FAA_2015_49_2_a9
ER  - 
%0 Journal Article
%A G. M. Zhislin
%T On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 85-88
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a9/
%G ru
%F FAA_2015_49_2_a9
G. M. Zhislin. On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 85-88. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a9/

[1] G. M. Zhislin, TMF, 157:1 (2008), 116–129 | DOI | MR | Zbl

[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR