Can Yano's extrapolation theorem be strengthened?
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 82-85
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that an extrapolation theorem for $L^{p}$ proposed by the author and a Yano-type theorem implied by it cannot be improved.
Keywords:
extrapolation theorem, Lorentz space.
Mots-clés : Lebesgue space
Mots-clés : Lebesgue space
@article{FAA_2015_49_2_a8,
author = {E. I. Berezhnoi},
title = {Can {Yano's} extrapolation theorem be strengthened?},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--85},
year = {2015},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a8/}
}
E. I. Berezhnoi. Can Yano's extrapolation theorem be strengthened?. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 82-85. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a8/
[1] S. Yano, J. Math. Soc. Japan., 3:2 (1951), 296–305 | DOI | MR | Zbl
[2] E. I. Berezhnoi, A. A. Perfilev, Funkts. analiz i ego pril., 34:3 (2000), 66–68 | DOI | MR | Zbl
[3] M. Milman, Extrapolation and Optimal Decompositions: with Applications to Analysis, Lecture Nothes in Math., 1580, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[4] B. Jawerth, M. Milman, Memoirs Amer. Math. Soc., 89:440 (1991), 1–82 | DOI | MR
[5] G. E. Karadzhov, M. Milman, J. Approx. Theory, 133:1 (2005), 38–99 | DOI | MR | Zbl
[6] S. V. Astashkin, Sib. matem. zhurn., 46:2 (2005), 264–289 | MR | Zbl