Spaces of quasi-invariance of product measures
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 79-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical results of Shepp and Feldman give a criterion for a product measure which is a countable power of a measure on $\mathbb R$ with positive density to be equivalent to its shift by any vector in $\ell^2$. In this work a similar problem is studied for shifts of a measure by vectors in $\ell^q$ for $1\le q 2$.
Keywords: space of quasi-invariance, space of equivalent shifts, Shepp's theorem, product measure.
@article{FAA_2015_49_2_a7,
     author = {L. M. Arutyunyan and E. D. Kosov},
     title = {Spaces of quasi-invariance of product measures},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--81},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/}
}
TY  - JOUR
AU  - L. M. Arutyunyan
AU  - E. D. Kosov
TI  - Spaces of quasi-invariance of product measures
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 79
EP  - 81
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/
LA  - ru
ID  - FAA_2015_49_2_a7
ER  - 
%0 Journal Article
%A L. M. Arutyunyan
%A E. D. Kosov
%T Spaces of quasi-invariance of product measures
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 79-81
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/
%G ru
%F FAA_2015_49_2_a7
L. M. Arutyunyan; E. D. Kosov. Spaces of quasi-invariance of product measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 79-81. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/

[1] L. A. Shepp, Ann. Math. Statist., 36:4 (1965), 1107–1112 | DOI | MR | Zbl

[2] J. Feldman, Trans. Amer. Soc., 99 (1961), 342–349 | DOI | MR | Zbl

[3] H. Shimomura, Publ. RIMS, Kyoto Univ., 11:3 (1976), 749–773 | DOI | MR | Zbl

[4] V. I. Bogachev, Osnovy teorii mery, t. 1, 2, RKhD, Moskva–Izhevsk, 2006

[5] V. N. Sudakov, UMN, 18:1 (1963), 188–190 | MR | Zbl

[6] A. M. Vershik, V. N. Sudakov, Zap. nauchn. sem. LOMI, 12 (1969), 7–67 | Zbl

[7] H. Shimomura, J. Math. Kyoto Univ., 21:4 (1981), 703–713 | MR | Zbl

[8] V. I. Bogachev, Differentsiruemye mery i ischislenie Mallyavena, RKhD, Moskva–Izhevsk, 2008

[9] L. D. Kudryavtsev, S. M. Nikolskii, Itogi nauki i tekhniki, Sovrem. probl. matem., Fundam. napravleniya, 26, VINITI, M., 1988, 5–157 | MR

[10] S. Kakutani, Ann. of Math., 49:1 (1948), 214–224 | DOI | MR | Zbl

[11] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR

[12] A. M. Vershik, Dokl. AN SSSR, 170 (1966), 497–500 | MR | Zbl