Spaces of quasi-invariance of product measures
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 79-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical results of Shepp and Feldman give a criterion for a product measure which is a countable power of a measure on $\mathbb R$ with positive density to be equivalent to its shift by any vector in $\ell^2$. In this work a similar problem is studied for shifts of a measure by vectors in $\ell^q$ for $1\le q 2$.
Keywords: space of quasi-invariance, space of equivalent shifts, Shepp's theorem, product measure.
@article{FAA_2015_49_2_a7,
     author = {L. M. Arutyunyan and E. D. Kosov},
     title = {Spaces of quasi-invariance of product measures},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--81},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/}
}
TY  - JOUR
AU  - L. M. Arutyunyan
AU  - E. D. Kosov
TI  - Spaces of quasi-invariance of product measures
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 79
EP  - 81
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/
LA  - ru
ID  - FAA_2015_49_2_a7
ER  - 
%0 Journal Article
%A L. M. Arutyunyan
%A E. D. Kosov
%T Spaces of quasi-invariance of product measures
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 79-81
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/
%G ru
%F FAA_2015_49_2_a7
L. M. Arutyunyan; E. D. Kosov. Spaces of quasi-invariance of product measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 79-81. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a7/