Singular points of the sum of a Dirichlet series on the convergence line
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 54-69
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the distribution of singular points of the sum of a Dirichlet series and obtain necessary and sufficient conditions for the sum of such a series to have at least one singular point on any segment of given length on the convergence line.
Keywords:
singular point, invariant subspace, fundamental principle.
Mots-clés : convex domain
Mots-clés : convex domain
@article{FAA_2015_49_2_a5,
author = {O. A. Krivosheeva and A. S. Krivosheev},
title = {Singular points of the sum of a {Dirichlet} series on the convergence line},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {54--69},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a5/}
}
TY - JOUR AU - O. A. Krivosheeva AU - A. S. Krivosheev TI - Singular points of the sum of a Dirichlet series on the convergence line JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 54 EP - 69 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a5/ LA - ru ID - FAA_2015_49_2_a5 ER -
O. A. Krivosheeva; A. S. Krivosheev. Singular points of the sum of a Dirichlet series on the convergence line. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 2, pp. 54-69. http://geodesic.mathdoc.fr/item/FAA_2015_49_2_a5/