Description of Unconditional Bases Formed by Values of the Dunkl Kernels
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 79-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Unconditional bases of the form $\{d_\alpha(i\lambda_n t): \lambda_n \in \Lambda\}$ in the space $L_2(-a, a)$ with measure $|x|^\gamma dx$, $\gamma=2\alpha+1$, are described. Here $d_\alpha(ixt)$ is the Dunkl kernel determined by
$$
d_\alpha(z)=2^\alpha\Gamma(\alpha+1)z^{-\alpha}(J_\alpha(z)+iJ_{\alpha+1}(z)), \; \alpha>-1,
$$
where $J_\alpha$ is the Bessel function of the first kind.
Keywords:
Dunkl transform, unconditional basis, non-self-adjoint operator, entire function.
@article{FAA_2015_49_1_a7,
author = {G. M. Gubreev and V. N. Levchuk},
title = {Description of {Unconditional} {Bases} {Formed} by {Values} of the {Dunkl} {Kernels}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {79--82},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a7/}
}
TY - JOUR AU - G. M. Gubreev AU - V. N. Levchuk TI - Description of Unconditional Bases Formed by Values of the Dunkl Kernels JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 79 EP - 82 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a7/ LA - ru ID - FAA_2015_49_1_a7 ER -
G. M. Gubreev; V. N. Levchuk. Description of Unconditional Bases Formed by Values of the Dunkl Kernels. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 79-82. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a7/