Description of Unconditional Bases Formed by Values of the Dunkl Kernels
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 79-82
Cet article a éte moissonné depuis la source Math-Net.Ru
Unconditional bases of the form $\{d_\alpha(i\lambda_n t): \lambda_n \in \Lambda\}$ in the space $L_2(-a, a)$ with measure $|x|^\gamma dx$, $\gamma=2\alpha+1$, are described. Here $d_\alpha(ixt)$ is the Dunkl kernel determined by $$ d_\alpha(z)=2^\alpha\Gamma(\alpha+1)z^{-\alpha}(J_\alpha(z)+iJ_{\alpha+1}(z)), \; \alpha>-1, $$ where $J_\alpha$ is the Bessel function of the first kind.
Keywords:
Dunkl transform, unconditional basis, non-self-adjoint operator, entire function.
@article{FAA_2015_49_1_a7,
author = {G. M. Gubreev and V. N. Levchuk},
title = {Description of {Unconditional} {Bases} {Formed} by {Values} of the {Dunkl} {Kernels}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {79--82},
year = {2015},
volume = {49},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a7/}
}
TY - JOUR AU - G. M. Gubreev AU - V. N. Levchuk TI - Description of Unconditional Bases Formed by Values of the Dunkl Kernels JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2015 SP - 79 EP - 82 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a7/ LA - ru ID - FAA_2015_49_1_a7 ER -
G. M. Gubreev; V. N. Levchuk. Description of Unconditional Bases Formed by Values of the Dunkl Kernels. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 79-82. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a7/
[1] C. F. Dunkel, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR
[2] M. de Jeu, Trans. Amer. Math. Soc., 358:10 (2006), 4225–4250 | DOI | MR | Zbl
[3] N. B. Anderson, M. de Jeu, Int. Math. Res. Notices, 30 (2005), 1817–1831 | DOI
[4] M. M. Dzhrbashyan, Integralnye preobrazoveniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR
[5] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR
[6] G. M. Gubreev, Algebra i analiz, 12:6 (2000), 1–97 | MR
[7] G. M. Gubreev, Izv. RAN, ser. matem, 69:1 (2005), 17–60 | DOI | MR | Zbl
[8] B. Ya Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956