Invariant Functionals and Zamolodchikovs' Integral
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 71-74

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex Selberg integral appearing in the Liouville model of conformal field theory is calculated by using the Bernstein–Reznikov method.
Keywords: Selberg integrals, multiplicity-one theorems.
@article{FAA_2015_49_1_a5,
     author = {Bui Van Binh and V. V. Schechtman},
     title = {Invariant {Functionals} and {Zamolodchikovs'} {Integral}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {71--74},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a5/}
}
TY  - JOUR
AU  - Bui Van Binh
AU  - V. V. Schechtman
TI  - Invariant Functionals and Zamolodchikovs' Integral
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 71
EP  - 74
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a5/
LA  - ru
ID  - FAA_2015_49_1_a5
ER  - 
%0 Journal Article
%A Bui Van Binh
%A V. V. Schechtman
%T Invariant Functionals and Zamolodchikovs' Integral
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 71-74
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a5/
%G ru
%F FAA_2015_49_1_a5
Bui Van Binh; V. V. Schechtman. Invariant Functionals and Zamolodchikovs' Integral. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 71-74. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a5/