Invariant Functionals and Zamolodchikovs' Integral
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 71-74
Cet article a éte moissonné depuis la source Math-Net.Ru
A complex Selberg integral appearing in the Liouville model of conformal field theory is calculated by using the Bernstein–Reznikov method.
Keywords:
Selberg integrals, multiplicity-one theorems.
@article{FAA_2015_49_1_a5,
author = {Bui Van Binh and V. V. Schechtman},
title = {Invariant {Functionals} and {Zamolodchikovs'} {Integral}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {71--74},
year = {2015},
volume = {49},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a5/}
}
Bui Van Binh; V. V. Schechtman. Invariant Functionals and Zamolodchikovs' Integral. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 71-74. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a5/
[1] J. H. Bernstein, A. Reznikov, Moscow Math. J., 4:1 (2004), 19–37 | DOI | MR | Zbl
[2] V. B. Bui, V. Schechtman, Moscow Math. J., 13:1 (2013), 585–600 | MR | Zbl
[3] I. M. Gelfand, I. M. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfyne funktsii, Obobschennye funktsii, 6, Nauka, M., 1966 | MR
[4] D. Harlow, J. Maltz, E. Witten, J. High Energy Phys., 2011, no. 12, 071 ; arXiv: 1108.4417 | DOI | MR | Zbl
[5] H. Loke, Pacific J. Math., 197 (2001), 119–144 | DOI | MR | Zbl
[6] A. Zamolodchikov, Al. Zamolodchikov, Nucl. Phys., B477:2 (1996), 577–605 | DOI | MR | Zbl