On Algebraic Functions Integrable in Finite Terms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Liouville's theorem describes algebraic functions integrable in terms of generalized elementary functions. In many cases, algorithms based on this theorem make it possible to either evaluate an integral or prove that the integral cannot be “evaluated in finite terms.” The results of the paper do not improve these algorithms but shed light on the arrangement of the $1$-forms integrable in finite terms among all $1$-forms on an algebraic curve.
Keywords: Abelian integral, algebraic function, elementary function, solvability in finite terms.
@article{FAA_2015_49_1_a4,
     author = {A. G. Khovanskii},
     title = {On {Algebraic} {Functions} {Integrable} in {Finite} {Terms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a4/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - On Algebraic Functions Integrable in Finite Terms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 62
EP  - 70
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a4/
LA  - ru
ID  - FAA_2015_49_1_a4
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T On Algebraic Functions Integrable in Finite Terms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 62-70
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a4/
%G ru
%F FAA_2015_49_1_a4
A. G. Khovanskii. On Algebraic Functions Integrable in Finite Terms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 62-70. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a4/

[1] A. G. Khovanskii, Topologicheskaya teoriya Galua. Razreshimost i nerazreshimost uravnenii v konechnom vide, MTsNMO, M., 2008

[2] J. Davenport, On the Integration of Algebraic Functions, Lecture Notes in Computer Science, 102, Springer-Verlag, Berlin–New York, 1981 | DOI | MR | Zbl

[3] M. F. Singer, “Formal solutions of differential equations”, J. Symbolic Comput., 10:1 (1990), 59–94 | DOI | MR | Zbl

[4] S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces and the geometry of the moduli space of pointed Riemann surfaces”, Geometry of Riemann surfaces and their moduli spaces, Surveys in Differential Geometry, XIV, International Press, Somerville, MA, 2009, 111–129 | DOI | MR

[5] I. Krichever, D. Zakharov, “A note on critical points of soliton equations”, Anal. Math. Phys., 1:1 (2011), 15–35 | DOI | MR

[6] S. Grushevsky, I. Krichever, Foliations on the moduli space of curves, vanishing in cohomology, and Calogero–Moser curves, arXiv: 1108.4211 | MR

[7] I. M. Krichever, “Veschestvenno-normirovannye differentsialy i gipoteza Arbarello”, Funkts. analiz i ego pril., 46:2 (2012), 37–51 | DOI | MR | Zbl