Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2015_49_1_a4, author = {A. G. Khovanskii}, title = {On {Algebraic} {Functions} {Integrable} in {Finite} {Terms}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {62--70}, publisher = {mathdoc}, volume = {49}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a4/} }
A. G. Khovanskii. On Algebraic Functions Integrable in Finite Terms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 62-70. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a4/
[1] A. G. Khovanskii, Topologicheskaya teoriya Galua. Razreshimost i nerazreshimost uravnenii v konechnom vide, MTsNMO, M., 2008
[2] J. Davenport, On the Integration of Algebraic Functions, Lecture Notes in Computer Science, 102, Springer-Verlag, Berlin–New York, 1981 | DOI | MR | Zbl
[3] M. F. Singer, “Formal solutions of differential equations”, J. Symbolic Comput., 10:1 (1990), 59–94 | DOI | MR | Zbl
[4] S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces and the geometry of the moduli space of pointed Riemann surfaces”, Geometry of Riemann surfaces and their moduli spaces, Surveys in Differential Geometry, XIV, International Press, Somerville, MA, 2009, 111–129 | DOI | MR
[5] I. Krichever, D. Zakharov, “A note on critical points of soliton equations”, Anal. Math. Phys., 1:1 (2011), 15–35 | DOI | MR
[6] S. Grushevsky, I. Krichever, Foliations on the moduli space of curves, vanishing in cohomology, and Calogero–Moser curves, arXiv: 1108.4211 | MR
[7] I. M. Krichever, “Veschestvenno-normirovannye differentsialy i gipoteza Arbarello”, Funkts. analiz i ego pril., 46:2 (2012), 37–51 | DOI | MR | Zbl