Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit
Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 31-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use self-adjoint extensions of differential and integral operators to construct an asymptotic model of the Steklov spectral problem describing surface waves over a bank. Estimates of the modeling error are established, and the following unexpected fact is revealed: an appropriate self-adjoint extension of the operators of the limit problems provides an approximation to the eigenvalues not only in the low- and midfrequency ranges of the spectrum but also on part of the high-frequency range.
Keywords: self-adjoint extension, asymptotics of the spectrum, Steklov spectral problem, surface waves.
@article{FAA_2015_49_1_a2,
     author = {S. A. Nazarov},
     title = {Modeling of a {Singularly} {Perturbed} {Spectral} {Problem} by {Means} of {Self-Adjoint} {Extensions} of the {Operators} of the {Limit}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--48},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2015
SP  - 31
EP  - 48
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a2/
LA  - ru
ID  - FAA_2015_49_1_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2015
%P 31-48
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a2/
%G ru
%F FAA_2015_49_1_a2
S. A. Nazarov. Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit. Funkcionalʹnyj analiz i ego priloženiâ, Tome 49 (2015) no. 1, pp. 31-48. http://geodesic.mathdoc.fr/item/FAA_2015_49_1_a2/

[1] J. J. Stoker, Water waves. The Mathematical Theory with Applications, John Willey Sons, New York, 1992 | MR

[2] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Matem. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo LGU, L., 1980 | MR

[4] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] S. A. Nazarov, “Asimptotika sobstvennykh chisel zadachi Steklova na sochlenenii oblastei razlichnykh predelnykh razmernostei”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 2033–2049 | MR | Zbl

[6] M. Lobo, E. Pérez, “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, Acad. Sci. Paris, 331:4 (2003), 303–317 | DOI | MR | Zbl

[7] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[8] Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, Birkhäuser, Basel, 2000 | MR | MR

[9] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shrëdingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[10] B. S. Pavlov, “Teoriya rasshirenii i yavno reshaemye modeli”, UMN, 42:6 (1987), 99–131 | MR | Zbl

[11] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, izd-vo LGU, L., 1975

[12] S. A. Nazarov, “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Trudy Sankt-Peterburg. matem. o-va, 5 (1996), 112–183

[13] I. V. Kamotskii, S. A. Nazarov, “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Trudy Sankt-Peterburg. matem. o-va, 6 (1998), 151–212 | MR

[14] M. D. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[15] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[16] S. A. Nazarov, “Ellipticheskie zadachi na gibridnykh oblastyakh”, Funkts. analiz i ego pril., 38:4 (2004), 55–72 | DOI | MR | Zbl

[17] S. A. Nazarov, “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei. 1”, Trudy semin. im. I. G. Petrovskogo, 18 (1995), 3–78 | MR

[18] S. A. Nazarov, “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei. 2”, Trudy semin. im. I. G. Petrovskogo, 20 (1997), 155–195 | MR | Zbl

[19] S. A. Nazarov, “Asimptoticheskii analiz i modelirovanie sochleneniya massivnogo tela s tonkimi sterzhnyami”, Trudy seminara im. I. G. Petrovskogo, 24 (2004), 95–214

[20] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multi-structures, Clarendon Press, Oxford, 1999 | MR | Zbl

[21] J. L. Lions, “Some more remarks on boundary value problems and junctions”, Asymptotic methods for elastic structures (Lisbon, 1993), de Gruyter, Berlin–New York, 1995, 103–118 | MR | Zbl

[22] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izv. vuzov, matem., 1962, no. 5, 11–21 | MR

[23] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda-Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | Zbl

[24] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter, Berlin–New York, 1994 | MR | Zbl

[25] V. I. Lebedev, V. I. Agoshkov, Operatory Puankare–Steklova i ikh prilozheniya v analize, Vych. tsentr AN SSSR, M., 1983 | MR

[26] V. I. Smirnov, Kurs vysshei matematiki, T. 2, Nauka, M., 1967 | MR

[27] S. A. Nazarov, B. A. Plamenevskii, “Obobschennaya formula Grina dlya ellipticheskikh zadach v oblastyakh s rebrami”, Problemy matem. analiza, 13 (1992), 106–147 | Zbl

[28] F. S. Rofe-Beketov, “Samosopryazhennye rasshireniya differentsialnykh operatorov v prostranstve vektor-funktsii”, Dokl. AN SSSR, 184 (1969), 1034–1037 | MR | Zbl

[29] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[30] S. A. Nazarov, “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 2. Zadacha v ogranichennoi oblasti”, Sib. matem. zh., 22:5 (1981), 132–152 | MR | Zbl

[31] N. Kh. Arutyunyan, S. A. Nazarov, “Ob osobennostyakh funktsii napryazheniya v uglovykh tochkakh poperechnogo secheniya skruchivaemogo sterzhnya s tonkim usilivayuschim pokrytiem”, Prikl. matem. mekhan., 47:1 (1983), 122–132 | MR