Point Equivalence of Functions on the $1$-Jet Space $J^1\mathbb{R}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 19-25
Voir la notice de l'article provenant de la source Math-Net.Ru
The action of the pseudogroup of point transformations on the set of smooth functions on the contact $1$-jet space $J^1\mathbb{R}$ is considered. Differential invariants of this action are found, and the problem of local point equivalence of regular smooth functions is solved.
Mots-clés :
jet space, point pseudogroup
Keywords: differential invariant, invariant derivation.
Keywords: differential invariant, invariant derivation.
@article{FAA_2014_48_4_a2,
author = {P. V. Bibikov},
title = {Point {Equivalence} of {Functions} on the $1${-Jet} {Space} $J^1\mathbb{R}$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {19--25},
publisher = {mathdoc},
volume = {48},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a2/}
}
P. V. Bibikov. Point Equivalence of Functions on the $1$-Jet Space $J^1\mathbb{R}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 4, pp. 19-25. http://geodesic.mathdoc.fr/item/FAA_2014_48_4_a2/