Optimal Elliptic Sobolev Regularity Near Three-Dimensional Multi-Material Neumann Vertices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 63-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the optimal elliptic regularity (within the scale of Sobolev spaces) of anisotropic div–grad operators in three dimensions at a multi-material vertex on the Neumann part of the boundary of a 3D polyhedral domain. The gradient of any solution of the corresponding elliptic partial differential equation (in a neighborhood of the vertex) is $p$-integrable with $p>3$.
Keywords: elliptic div–grad operator, piecewise linear 3D flattening, anisotropic ellipticity in three dimensions, transmission at material interfaces, mixed Dirichlet–Neumann boundary conditions, optimal Sobolev regularity.
@article{FAA_2014_48_3_a5,
     author = {R. Haller-Dintelmann and W. H\"oppner and H.-Ch. Kaiser and J. Rehberg and G. M. Ziegler},
     title = {Optimal {Elliptic} {Sobolev} {Regularity} {Near} {Three-Dimensional} {Multi-Material} {Neumann} {Vertices}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {63--83},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a5/}
}
TY  - JOUR
AU  - R. Haller-Dintelmann
AU  - W. Höppner
AU  - H.-Ch. Kaiser
AU  - J. Rehberg
AU  - G. M. Ziegler
TI  - Optimal Elliptic Sobolev Regularity Near Three-Dimensional Multi-Material Neumann Vertices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 63
EP  - 83
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a5/
LA  - ru
ID  - FAA_2014_48_3_a5
ER  - 
%0 Journal Article
%A R. Haller-Dintelmann
%A W. Höppner
%A H.-Ch. Kaiser
%A J. Rehberg
%A G. M. Ziegler
%T Optimal Elliptic Sobolev Regularity Near Three-Dimensional Multi-Material Neumann Vertices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 63-83
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a5/
%G ru
%F FAA_2014_48_3_a5
R. Haller-Dintelmann; W. Höppner; H.-Ch. Kaiser; J. Rehberg; G. M. Ziegler. Optimal Elliptic Sobolev Regularity Near Three-Dimensional Multi-Material Neumann Vertices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 63-83. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a5/

[1] P. Alexandroff, H. Hopf, Topologie, Grundlehren der math. Wissenschaften, 45, Springer-Verlag, Berlin, 1935 ; \Russian исправленное репринтное издание, Springer-Verlag, Berlin–Heidelberg–New York, 1974 | Zbl | Zbl

[2] R. H. Bing, The Geometric Topology of $3$-Manifolds, AMS Colloquium Publications, 40, Amer. Math. Soc., Providence, RI, 1983 | DOI | MR | Zbl

[3] M. Chipot, D. Kinderlehrer, G. V. Caffarelli, “Smoothness of linear laminates”, Arch. Rational Mech. Anal., 96:1 (1986), 81–96 | DOI | MR | Zbl

[4] M. Costabel, M. Dauge, S. Nicaise, “Singularities of Maxwell interface problems”, M2AN, Math. Model. Numer. Anal., 33:3 (1999), 627–649 | DOI | MR | Zbl

[5] A. Cianchi, V. Maz'ya, “Neumann problems and isocapacitary inequalities”, J. Math. Pures Appl., 89:1 (2008), 71–105 | DOI | MR | Zbl

[6] M. Dauge, “Neumann and mixed problems on curvilinear polyhedra”, Integral Equations Operator Theory, 15:2 (1992), 227–261 | DOI | MR | Zbl

[7] J. Elschner, H.-C. Kaiser, J. Rehberg, G. Schmidt, “$W^{1,q}$ regularity results for elliptic transmission problems on heterogeneous polyhedra”, Math. Models Methods Appl. Sci., 17:4 (2007), 593–615 | DOI | MR | Zbl

[8] J. Elschner, J. Rehberg, G. Schmidt, “Optimal regularity for elliptic transmission problems including $C^1$ interfaces”, Interfaces Free Bound., 9:2 (2007), 233–252 | DOI | MR | Zbl

[9] R. Haller-Dintelmann, H.-C. Kaiser, J. Rehberg, “Elliptic model problems including mixed boundary conditions and material heterogeneities”, J. Math. Pures Appl., 89:1 (2008), 25–48 | DOI | MR | Zbl

[10] R. Haller-Dintelmann, J. Rehberg, “Maximal parabolic regularity for divergence operators including mixed boundary conditions”, J. Differential Equations, 247 (2009), 1354–1396 | DOI | MR | Zbl

[11] D. Hömberg, Ch. Meyer, J. Rehberg, W. Ring, “Optimal control for the thermistor problem”, SIAM J. Control Optim., 48 (2010), 3449–3481 | DOI | MR | Zbl

[12] D. Jerison, C. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl

[13] H.-C. Kaiser, J. Rehberg, “Optimal elliptic regularity at the crossing of a material interface and a Neumann boundary edge”, J. Math. Sci. (N.Y.), 169:2 (2010), 145–166 | DOI | MR | Zbl

[14] D. Knees, “On the regularity of weak solutions of quasi-linear elliptic transmission problems on polyhedral domains”, Z. Anal. Anwendungen, 23:3 (2004), 509–546 | DOI | MR | Zbl

[15] D. Leguillon, E. Sanchez-Palenzia, Computation of Singular Solutions in Elliptic Problems and Elasticity, John Wiley Sons, Chichester; Masson, Paris, 1987 | MR | Zbl

[16] Y. Y. Li, M. Vogelius, “Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients”, Arch. Ration. Mech. Anal., 153:2 (2000), 91–151 | DOI | MR | Zbl

[17] J. Luukkainen, J. Väisälä, “Elements of Lipschitz topology”, Ann. Acad. Sci. Fenn., Ser. A I Math., 3:1 (1977), 85–122 | DOI | MR | Zbl

[18] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, Leningrad, 1985 | MR | Zbl

[19] V. Maz'ya, J. Rossmann, Elliptic Equations in Polyhedral Domains, Math. Surveys and Monographs, 162, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[20] V. Maz'ya, J. Rossmann, “Weighted $L_p$ estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains”, Z. Angew. Math. Mech., 83:7 (2003), 435–467 | DOI | MR | Zbl

[21] V. Maz'ya, J. Elschner, J. Rehberg, G. Schmidt, “Solutions for quasilinear evolution systems in $L^p$”, Arch. Ration. Mech. Anal., 171:2 (2004), 219–262 | DOI | MR | Zbl

[22] V. G. Mazya, S. A. Nazarov, “Osobennosti reshenii zadachi Neimana v konicheskoi tochke”, Sib. matem. zhurn., 30:3 (1989), 52–63 | MR | Zbl

[23] E. E. Moise, Geometric Topology in Dimensions $2$ and $3$, Graduate Texts in Math., 47, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl

[24] S. Nicaise, Polygonal interface problems, Methoden und Verfahren der Mathematischen Physik, Bd. 39, Verlag Peter D. Lang, Frankfurt/M, 1993 | MR | Zbl

[25] S. Nicaise, A.-M. Sändig, “General interface problems. I, II”, Math. Methods Appl. Sci., 17:6 (1994), 395–429, 431–450 | DOI | MR | Zbl

[26] M. Petzoldt, “Regularity results for Laplace interface problems in two dimensions”, Z. Anal. Anwendungen, 20:2 (2001), 431–455 | DOI | MR | Zbl

[27] G. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl

[28] L. Siebenmann, D. Sullivan, “On complexes that are Lipschitz manifolds”, Geometric Topology, Proc. 1977 Georgia Topology Conf., Athens/GA 1977, Academic Press, New York–London, 1979, 503–525 | DOI | MR

[29] I. E. Tamm, Osnovy teorii elektrichestva, Fizmatlit, M., 1989

[30] D. Zanger, “The inhomogeneous Neumann problem in Lipschitz domains”, Comm. Partial Differential Equations, 25:9–10 (2000), 1771–1808 | DOI | MR | Zbl