Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 34-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiscale homogenization estimate for a parabolic diffusion equation under minimal regularity conditions is proved. This makes it possible to treat the result as an estimate in the operator norm for the difference of the operator exponentials of the initial and homogenized equations.
Keywords: homogenization, operator-type estimates, locally periodic and multiscale coefficients, shift parameters.
@article{FAA_2014_48_3_a3,
     author = {S. E. Pastukhova},
     title = {Approximation of the {Exponential} of a {Diffusion} {Operator} with {Multiscale} {Coefficients}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--51},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a3/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 34
EP  - 51
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a3/
LA  - ru
ID  - FAA_2014_48_3_a3
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 34-51
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a3/
%G ru
%F FAA_2014_48_3_a3
S. E. Pastukhova. Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 34-51. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a3/

[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam–New York, 1978 | MR | Zbl

[2] G. Allaire, M. Briane, “Multiscale convergence and reiterated homogenization”, Proc. Roy. Soc. Edinburgh Sect. A, 126:2 (1996), 297–342 | DOI | MR | Zbl

[3] J.-L. Lions, D. Lukkassen, L.-E. Persson, P. Wall, “Reiterated homogenization of monotone operators”, C. R. Acad. Sci. Paris Ser. I Math., 330:8 (2000), 675–680 | DOI | MR | Zbl

[4] J.-L. Lions, D. Lukkassen, L.-E. Persson, P. Wall, “Reiterated homogenization of nonlinear monotone operators”, Chinese Ann. Math. Ser. B, 22:1 (2001), 1–12 | DOI | MR | Zbl

[5] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[6] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR

[7] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR | Zbl

[8] V. V. Zhikov, “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl

[9] S. E. Pastukhova, “O nekotorykh otsenkakh iz usredneniya zadach teorii uprugosti”, Dokl. RAN, 406:5 (2006), 604–608 | MR | Zbl

[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[11] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 351–265 | DOI | MR

[12] V. V. Zhikov, S. V. Tikhomirova, “Ob operatornykh otsenkakh v nesimmetricheskikh zadachakh usredneniya”, Sovremennaya matematika i ee prilozheniya, 33 (2005), 124–128

[13] G. Cardone, S. E. Pastukhova, V. V. Zhikov, “Some estimates for non-linear homogenization”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 101–110 | MR

[14] V. V. Zhikov, C. E. Pastukhova, “Usrednenie vyrozhdayuschikhsya ellipticheskikh uravnenii”, Sib. matem. zhurn., 49:1 (2008), 101–124 | MR | Zbl

[15] S. E. Pastukhova, S. V. Tikhomirova, “Ellipticheskoe uravnenie s nesimmetricheskoi matritsei. Usrednenie «variatsionnykh reshenii»”, Matem. zametki, 81:4 (2007), 631–635 | DOI | MR | Zbl

[16] S. E. Pastukhova, “Operatornye otsenki v nelineinykh zadachakh povtornogo usredneniya”, Trudy MIAN, 261 (2007), 220–233 | MR

[17] S. E. Pastukhova, R. N. Tikhomirov, “Operatornye otsenki povtornogo i lokalno periodicheskogo usredneniya”, Dokl. RAN, 415:3 (2007), 304–309 | MR | Zbl

[18] S. E. Pastukhova, “Estimates in homogenization for parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66:3–4 (2010), 207–228 | DOI | MR | Zbl

[19] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[20] T. A. Suslina, “Usrednenie periodicheskikh parabolicheskikh sistem”, Funkts. anal. i ego pril., 38:4 (2004), 86–90 | DOI | MR | Zbl

[21] T. A. Suslina, “Homogenization of periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl

[22] E. S. Vasilevskaya, T. A. Suslina, “Usrednenie parabolicheskikh i ellipticheskikh periodicheskikh operatorov v $L_2(\mathbb{R}^d)$ pri uchete pervogo i vtorogo korrektorov”, Algebra i analiz, 24:2 (2012), 1–103 | MR

[23] V. V. Zhikov, “O spektralnom metode v teorii usredneniya”, Trudy MIAN, 250 (2005), 95–104 | MR | Zbl

[24] S. E. Pastukhova, “Ob approksimatsiyakh eksponenty operatora s periodicheskimi koeffitsientami”, Probl. matem. analiza, vyp. 63, 2012, 81–108

[25] S. E. Pastukhova, “Approksimatsii operatornoi eksponenty v periodicheskoi zadache diffuzii so snosom”, Matem. sb., 204:2 (2013), 133–160 | DOI | MR | Zbl