Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 34-51
Voir la notice de l'article provenant de la source Math-Net.Ru
A multiscale homogenization estimate for a parabolic diffusion equation under minimal regularity conditions is proved. This makes it possible to treat the result as an estimate in the operator norm for the difference of the operator exponentials of the initial and homogenized equations.
Keywords:
homogenization, operator-type estimates, locally periodic and multiscale coefficients, shift parameters.
@article{FAA_2014_48_3_a3,
author = {S. E. Pastukhova},
title = {Approximation of the {Exponential} of a {Diffusion} {Operator} with {Multiscale} {Coefficients}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {34--51},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a3/}
}
TY - JOUR AU - S. E. Pastukhova TI - Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2014 SP - 34 EP - 51 VL - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a3/ LA - ru ID - FAA_2014_48_3_a3 ER -
S. E. Pastukhova. Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 3, pp. 34-51. http://geodesic.mathdoc.fr/item/FAA_2014_48_3_a3/