On the Mirabolic Lie Algebra $\mathfrak{p}_n$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 88-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Lie algebra $\mathfrak{g}=\mathfrak{p}_n$ of $(n+1)\times (n+1)$ matrices with zeros in the last row. This algebra has received the name of mirabolic; it has many remarkable properties and plays an important role in representation theory. In this paper we study open coadjoint orbits for the corresponding Lie group $P_n$.
Keywords: Lie groups, representations.
Mots-clés : Lie algebras
@article{FAA_2014_48_2_a5,
     author = {A. A. Kirillov},
     title = {On the {Mirabolic} {Lie} {Algebra} $\mathfrak{p}_n$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--92},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a5/}
}
TY  - JOUR
AU  - A. A. Kirillov
TI  - On the Mirabolic Lie Algebra $\mathfrak{p}_n$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 88
EP  - 92
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a5/
LA  - ru
ID  - FAA_2014_48_2_a5
ER  - 
%0 Journal Article
%A A. A. Kirillov
%T On the Mirabolic Lie Algebra $\mathfrak{p}_n$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 88-92
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a5/
%G ru
%F FAA_2014_48_2_a5
A. A. Kirillov. On the Mirabolic Lie Algebra $\mathfrak{p}_n$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 88-92. http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a5/

[1] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinski, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994 | MR | Zbl

[2] I. M. Gelfand, A. A. Kirillov, Inst. Hautes Études Sci. Publ. Math., 31:1 (1966), 5–19 | DOI | MR

[3] A. A. Kirillov, Electron. Res. Announc. Amer. Math. Soc., 6, March 1, 2000 (2000), 7–20 | DOI | MR | Zbl

[4] A. A. Kirillov, Mosc. Math. J., 1:1 (2001), 49–63 | DOI | MR | Zbl

[5] A. A. Kirillov, Proc. of the Conference in the memory of J.-M. Souriau (Aix-en-Provence, 2013)