On the Mirabolic Lie Algebra $\mathfrak{p}_n$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 88-92
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the Lie algebra $\mathfrak{g}=\mathfrak{p}_n$ of $(n+1)\times (n+1)$ matrices with zeros in the last row. This algebra has received the name of mirabolic; it has many remarkable properties and plays an important role in representation theory. In this paper we study open coadjoint orbits for the corresponding Lie group $P_n$.
Keywords:
Lie groups, representations.
Mots-clés : Lie algebras
Mots-clés : Lie algebras
@article{FAA_2014_48_2_a5,
author = {A. A. Kirillov},
title = {On the {Mirabolic} {Lie} {Algebra} $\mathfrak{p}_n$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {88--92},
year = {2014},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a5/}
}
A. A. Kirillov. On the Mirabolic Lie Algebra $\mathfrak{p}_n$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 88-92. http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a5/
[1] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinski, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994 | MR | Zbl
[2] I. M. Gelfand, A. A. Kirillov, Inst. Hautes Études Sci. Publ. Math., 31:1 (1966), 5–19 | DOI | MR
[3] A. A. Kirillov, Electron. Res. Announc. Amer. Math. Soc., 6, March 1, 2000 (2000), 7–20 | DOI | MR | Zbl
[4] A. A. Kirillov, Mosc. Math. J., 1:1 (2001), 49–63 | DOI | MR | Zbl
[5] A. A. Kirillov, Proc. of the Conference in the memory of J.-M. Souriau (Aix-en-Provence, 2013)