Cohomology of the Lie Algebra $\mathfrak{H}_2$: Experimental Results and Conjectures
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 67-78
Cet article a éte moissonné depuis la source Math-Net.Ru
The cohomology with trivial coefficients of the Lie algebra $\mathfrak{H}$ of Hamiltonian vector fields in the plane and of its maximal nilpotent subalgebra $L_1\mathfrak{H}$ is considered. The cohomology $H^2(L_1\mathfrak{H})$ is calculated, and some far-reaching conjectures concerning the cohomology of the Lie algebras mentioned above and based on an extensive experimental material are formulated.
Keywords:
cohomology, Lie algebra, Hamiltonian vector field.
@article{FAA_2014_48_2_a3,
author = {S. Mohammadzadeh and D. B. Fuchs},
title = {Cohomology of the {Lie} {Algebra} $\mathfrak{H}_2$: {Experimental} {Results} and {Conjectures}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {67--78},
year = {2014},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a3/}
}
TY - JOUR
AU - S. Mohammadzadeh
AU - D. B. Fuchs
TI - Cohomology of the Lie Algebra $\mathfrak{H}_2$: Experimental Results and Conjectures
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2014
SP - 67
EP - 78
VL - 48
IS - 2
UR - http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a3/
LA - ru
ID - FAA_2014_48_2_a3
ER -
S. Mohammadzadeh; D. B. Fuchs. Cohomology of the Lie Algebra $\mathfrak{H}_2$: Experimental Results and Conjectures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 67-78. http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a3/
[1] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl
[2] I. M. Gelfand, D. I. Kalinin, D. B. Fuks, “O kogomologiyakh algebry Li gamiltonovykh formalnykh vektornykh polei”, Funkts. analiz i ego pril., 6:3 (1972), 25–29 | MR | Zbl
[3] J. Perchik, “Cohomology of Hamiltonian and related formal vector fields Lie algebras”, Topology, 15:4 (1976), 395–404 | DOI | MR | Zbl