Limits of Integrable Hamiltonians on Semisimple Lie Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the limit of integrable Hamiltonians on a semisimple Lie algebra is an integrable Hamiltonian. Some limits of integrable Hamiltonians obtained by the argument shift method such that these limits themselves cannot be obtained by this method are constructed.
Mots-clés : Poisson algebra
Keywords: Hamiltonian system, complete integrability, semisimple Lie algebra, transcendence degree, Gelfand–Kirillov dimension.
@article{FAA_2014_48_2_a1,
     author = {\`E. B. Vinberg},
     title = {Limits of {Integrable} {Hamiltonians} on {Semisimple} {Lie} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a1/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - Limits of Integrable Hamiltonians on Semisimple Lie Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 39
EP  - 50
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a1/
LA  - ru
ID  - FAA_2014_48_2_a1
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T Limits of Integrable Hamiltonians on Semisimple Lie Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 39-50
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a1/
%G ru
%F FAA_2014_48_2_a1
È. B. Vinberg. Limits of Integrable Hamiltonians on Semisimple Lie Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 2, pp. 39-50. http://geodesic.mathdoc.fr/item/FAA_2014_48_2_a1/

[1] E. B. Vinberg, “O nekotorykh kommutativnykh podalgebrakh universalnoi obertyvayuschei algebry”, Izv. AN SSSR, ser. matem., 54:1 (1990), 3–25 | MR | Zbl

[2] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | MR | Zbl

[3] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR, ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[4] V. V. Shuvalov, “O predelakh podalgebr Mischenko–Fomenko v algebrakh Puassona poluprostykh algebr Li”, Funkts. analiz i ego pril., 36:4 (2002), 55–64 | DOI | MR | Zbl

[5] W. Borho, H. Kraft, “Über die Gelfand–Kirillov–Dimension”, Math. Ann., 220:1 (1976), 1–24 | DOI | MR | Zbl

[6] I. M. Gelfand, A. A. Kirillov, “Sur les corps liés aux algèbres enveloppantes des algèbres de Lie”, Inst. Hautes Études Sci. Publ. Math., 31:1 (1966), 5–19 | DOI | MR | Zbl

[7] B. Kostant, “The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group”, Amer. J. Math., 81 (1959), 973–1032 | DOI | MR | Zbl

[8] R. W. Richardson, “Commuting varieties of semisimple Lie algebras and algebraic groups”, Compositio Math., 38:3 (1979), 311–327 | MR | Zbl