$A$-Hypergeometric Functions in Transcendental Questions of Algebraic Geometry
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 93-96
Cet article a éte moissonné depuis la source Math-Net.Ru
We generalize known constructions of $A$-hypergeometric functions. In particular, we show that the periods of middle dimension on affine or projective complex algebraic varieties are $A$-hypergeometric functions of the coefficients of polynomial equations of these varieties.
Keywords:
hypergeometric system, periods, Gelfand–Leray integral.
@article{FAA_2014_48_1_a7,
author = {A. V. Stoyanovskii},
title = {$A${-Hypergeometric} {Functions} in {Transcendental} {Questions} of {Algebraic} {Geometry}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {93--96},
year = {2014},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a7/}
}
A. V. Stoyanovskii. $A$-Hypergeometric Functions in Transcendental Questions of Algebraic Geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a7/
[1] I. M. Gelfand, A. V. Zelevinskii, M. M. Kapranov, Funkts. analiz i ego pril., 23:2 (1989), 12–26 | MR | Zbl
[2] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Adv. Math., 84:2 (1990), 255–271 | DOI | MR | Zbl
[3] I. M. Gelfand, M. I. Graev, Lett. Math. Phys., 50:1 (1999), 1–28 ; arXiv: math/9905134 | DOI | MR | Zbl
[4] B. Sturmfels, Discrete Math., 210:1–3 (2000), 171–181 | DOI | MR | Zbl