On a Method for Computing Waveguide Scattering Matrices in the Presence of Point Spectrum
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 61-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A waveguide occupies a domain $G$ in $\mathbb R^{n+1}$, $n\ge 1$, having several cylindrical outlets to infinity. The waveguide is described by a general elliptic boundary value problem that is self-adjoint with respect to the Green formula and contains a spectral parameter $\mu$. As an approximation to a row of the scattering matrix $S(\mu)$ we suggest a minimizer of a quadratic functional $J^R(\,\cdot\,,\mu)$. To construct such a functional, we solve an auxiliary boundary value problem in the bounded domain obtained by cutting off, at a distance $R$, the waveguide outlets to infinity. It is proved that, if a finite interval $[\mu_1,\mu_2]$ of the continuous spectrum contains no thresholds, then, as $R\to\infty$, the minimizer tends to the row of the scattering matrix at an exponential rate uniformly with respect to $\mu\in[\mu_1,\mu_2]$. The interval may contain some waveguide eigenvalues whose eigenfunctions exponentially decay at infinity.
Keywords: elliptic systems, quadratic functional, minimizer, convergence at exponential rate.
@article{FAA_2014_48_1_a4,
     author = {B. A. Plamenevskii and O. V. Sarafanov},
     title = {On a {Method} for {Computing} {Waveguide} {Scattering} {Matrices} in the {Presence} of {Point} {Spectrum}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--72},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a4/}
}
TY  - JOUR
AU  - B. A. Plamenevskii
AU  - O. V. Sarafanov
TI  - On a Method for Computing Waveguide Scattering Matrices in the Presence of Point Spectrum
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 61
EP  - 72
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a4/
LA  - ru
ID  - FAA_2014_48_1_a4
ER  - 
%0 Journal Article
%A B. A. Plamenevskii
%A O. V. Sarafanov
%T On a Method for Computing Waveguide Scattering Matrices in the Presence of Point Spectrum
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 61-72
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a4/
%G ru
%F FAA_2014_48_1_a4
B. A. Plamenevskii; O. V. Sarafanov. On a Method for Computing Waveguide Scattering Matrices in the Presence of Point Spectrum. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 61-72. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a4/

[1] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[2] V. Grikurov, E. Heikkola, P. Neittaanmäki, B. Plamenevskii, “On computation of scattering matrices and on surface waves for diffraction gratings”, Numer. Math., 94:2 (2003), 269–288 | DOI | MR | Zbl

[3] B. A. Plamenevskii, O. V. Sarafanov, “O metode vychisleniya matrits rasseyaniya dlya volnovodov”, Algebra i analiz, 23:1 (2011), 200–231 | MR

[4] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–160 | MR

[5] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, M., Mir, 1971

[6] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy MMO, 16 (1967), 219–292

[7] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985 | MR | Zbl

[8] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys and Monographs, 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[9] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl