Characters of Representations of the Quantum Toroidal Algebra $\widehat{\widehat{\mathfrak{gl}_1}}$:
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 46-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

An expression for the generating function of plane partitions $a_{i,j}$ subject to the constraints $a_{m,n}=0$ and $a_{i,j}\ge k_j$, $1\le j\le n$, which is the character of an irreducible representation of the quantum toroidal algebra $\widehat{\widehat{\mathfrak{gl}_1}}$, is obtained.
Mots-clés : plane partitions
Keywords: RSK algorithm, representations of the Lie algebra.
@article{FAA_2014_48_1_a3,
     author = {G. S. Mutafyan and B. L. Feigin},
     title = {Characters of {Representations} of the {Quantum} {Toroidal} {Algebra} $\widehat{\widehat{\mathfrak{gl}_1}}$:},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/}
}
TY  - JOUR
AU  - G. S. Mutafyan
AU  - B. L. Feigin
TI  - Characters of Representations of the Quantum Toroidal Algebra $\widehat{\widehat{\mathfrak{gl}_1}}$:
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 46
EP  - 60
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/
LA  - ru
ID  - FAA_2014_48_1_a3
ER  - 
%0 Journal Article
%A G. S. Mutafyan
%A B. L. Feigin
%T Characters of Representations of the Quantum Toroidal Algebra $\widehat{\widehat{\mathfrak{gl}_1}}$:
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 46-60
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/
%G ru
%F FAA_2014_48_1_a3
G. S. Mutafyan; B. L. Feigin. Characters of Representations of the Quantum Toroidal Algebra $\widehat{\widehat{\mathfrak{gl}_1}}$:. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 46-60. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/

[1] G. S. Mutafyan, B. L. Feigin, “Kvantovaya toroidalnaya algebra $\widehat{\widehat{\mathfrak{gl}_1}}$: vychislenie kharakterov nekotorykh predstavlenii kak proizvodyaschikh funktsii ploskikh razbienii”, Funkts. analiz i ego pril., 47:1 (2013), 62–76 | DOI | MR | Zbl

[2] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum toroidal $\mathfrak{gl}_1$ algebra: plane partitions”, Kyoto J. Math., 52:3 (2012), 621–659 ; arXiv: 1110.5310v1 | DOI | MR | Zbl

[3] R. Stenli, Perechislitelnaya kombinatorika, Mir, M., 1990 | MR

[4] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005 | MR

[5] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, v. 4, Elsevier/North-Holland, Amsterdam, 2006, 109–170 ; arXiv: math/0211289v2 | DOI | MR | Zbl

[6] R. Goodman, N. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 1998 | MR