Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2014_48_1_a3, author = {G. S. Mutafyan and B. L. Feigin}, title = {Characters of {Representations} of the {Quantum} {Toroidal} {Algebra} $\widehat{\widehat{\mathfrak{gl}_1}}$:}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {46--60}, publisher = {mathdoc}, volume = {48}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/} }
TY - JOUR AU - G. S. Mutafyan AU - B. L. Feigin TI - Characters of Representations of the Quantum Toroidal Algebra $\widehat{\widehat{\mathfrak{gl}_1}}$: JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2014 SP - 46 EP - 60 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/ LA - ru ID - FAA_2014_48_1_a3 ER -
%0 Journal Article %A G. S. Mutafyan %A B. L. Feigin %T Characters of Representations of the Quantum Toroidal Algebra $\widehat{\widehat{\mathfrak{gl}_1}}$: %J Funkcionalʹnyj analiz i ego priloženiâ %D 2014 %P 46-60 %V 48 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/ %G ru %F FAA_2014_48_1_a3
G. S. Mutafyan; B. L. Feigin. Characters of Representations of the Quantum Toroidal Algebra $\widehat{\widehat{\mathfrak{gl}_1}}$:. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 46-60. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a3/
[1] G. S. Mutafyan, B. L. Feigin, “Kvantovaya toroidalnaya algebra $\widehat{\widehat{\mathfrak{gl}_1}}$: vychislenie kharakterov nekotorykh predstavlenii kak proizvodyaschikh funktsii ploskikh razbienii”, Funkts. analiz i ego pril., 47:1 (2013), 62–76 | DOI | MR | Zbl
[2] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum toroidal $\mathfrak{gl}_1$ algebra: plane partitions”, Kyoto J. Math., 52:3 (2012), 621–659 ; arXiv: 1110.5310v1 | DOI | MR | Zbl
[3] R. Stenli, Perechislitelnaya kombinatorika, Mir, M., 1990 | MR
[4] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005 | MR
[5] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, v. 4, Elsevier/North-Holland, Amsterdam, 2006, 109–170 ; arXiv: math/0211289v2 | DOI | MR | Zbl
[6] R. Goodman, N. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 1998 | MR