Absence of Solitons with Sufficient Algebraic Localization for the Novikov--Veselov Equation at Nonzero Energy
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 30-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Novikov–Veselov equation (an analogue of the KdV equation in dimension $2+1$) at positive and negative energies does not have solitons with space localization stronger than $O(|x|^{-3})$ as $|x|\to\infty$.
Keywords: traveling wave, localized soliton, Novikov–Veselov equation.
@article{FAA_2014_48_1_a2,
     author = {A. V. Kazeykina},
     title = {Absence of {Solitons} with {Sufficient} {Algebraic} {Localization} for the {Novikov--Veselov} {Equation} at {Nonzero} {Energy}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--45},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a2/}
}
TY  - JOUR
AU  - A. V. Kazeykina
TI  - Absence of Solitons with Sufficient Algebraic Localization for the Novikov--Veselov Equation at Nonzero Energy
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 30
EP  - 45
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a2/
LA  - ru
ID  - FAA_2014_48_1_a2
ER  - 
%0 Journal Article
%A A. V. Kazeykina
%T Absence of Solitons with Sufficient Algebraic Localization for the Novikov--Veselov Equation at Nonzero Energy
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 30-45
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a2/
%G ru
%F FAA_2014_48_1_a2
A. V. Kazeykina. Absence of Solitons with Sufficient Algebraic Localization for the Novikov--Veselov Equation at Nonzero Energy. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 30-45. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a2/

[1] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cabridge, 1991 | MR | Zbl

[2] M. Boiti, J.J.-P. Leon, M. Manna, F. Pempinelli, “On a spectral transform of a KdV-like equation related to the Schrödinger operator in the plane”, Inverse Problems, 3:1 (1987), 25–36 | DOI | MR | Zbl

[3] M. Boiti, J.J.-P. Leon, L. Martina, F. Pempinelli, “Scattering of localized solitons in the plane”, Phys. Lett. A., 132 (1988), 432–439 | DOI | MR

[4] A. de Bouard, J.-C. Saut, “Solitary waves of generalized Kadomtsev–Petviashvili equations”, Ann. Inst. H. Poincaré, Analyse Non Linéaire, 14:2 (1997), 211–236 | DOI | MR | Zbl

[5] A. de Bouard, J.-C. Saut, “Symmetries and decay of the generalized Kadomtsev–Petviashvili solitary waves”, SIAM J. Math. Anal., 28:5 (1997), 1064–1085 | DOI | MR | Zbl

[6] L. D. Faddeev, “Rastuschie resheniya uravneniya Shrëdingera”, Dokl. AN SSSR, 165 (1965), 514–517 | Zbl

[7] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 3, VINITI, M., 1974, 93–180 | MR

[8] A. S. Fokas, M. J. Ablowitz, “On the inverse scattering of the time–dependent Schrödinger equation and the associated Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:3 (1983), 211–228 | DOI | MR | Zbl

[9] A. S. Fokas, P. M. Santini, “Coherent structures in multidimensions”, Phys. Rev. Lett., 63:13 (1983), 1329–1333 | DOI | MR

[10] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[11] P. G. Grinevich, “Ratsionalnye solitony uravnenii Veselova–Novikova — bezotrazhatelnye pri fiksirovannoi energii dvumernye potentsialy”, TMF, 69:2 (1986), 307–310 | MR | Zbl

[12] P. G. Grinevich, “Preobrazovanie rasseyaniya dlya dvumernogo operatora Shrëdingera s ubyvayuschim na beskonechnosti potentsialom pri fiksirovannoi nenulevoi energii”, UMN, 55:6(336) (2000), 3–70 | DOI | MR | Zbl

[13] P. G. Grinevich, R. G. Novikov, “Analogi mnogosolitonnykh potentsialov dlya dvumernogo operatora Shrëdingera i nelokalnaya zadacha Rimana”, Dokl. AN SSSR, 286:1 (1986), 19–22 | MR | Zbl

[14] P. G. Grinevich, S. P. Novikov, “Dvumernaya «obratnaya zadacha rasseyaniya» dlya otritsatelnykh energii i obobschenno-analiticheskie funktsii. I. Energii nizhe osnovnogo sostoyaniya”, Funkts. analiz i ego pril., 22:1 (1988), 23–33 | MR | Zbl

[15] R. G. Novikov, G. M. Khenkin, “$\bar\partial$-uravnenie v mnogomernoi obratnoi zadache rasseyaniya”, UMN, 42:3 (1987), 93–152 | MR | Zbl

[16] A. V. Kazeykina, “A large time asymptotics for the solution of the Cauchy problem for the Novikov–Veselov equation at negative energy with non-singular scattering data”, Inverse Problems, 28:5 (2012), 055017 | DOI | MR | Zbl

[17] A. V. Kazeikina, “Otsutstvie solitonov konduktivnogo tipa dlya uravneniya Veselova–Novikova pri nulevoi energii”, Funkts. analiz i ego pril., 47:1 (2013), 79–82 | DOI | MR

[18] A. V. Kazeykina, Absence of solitons with sufficient algebraic localization for the Novikov–Veselov equation at nonzero energy, arXiv: 1201.2758 | MR

[19] A. V. Kazeykina, R. G. Novikov, “A large time asymptotics for transparent potentials for the Novikov–Veselov equation at positive energy”, J. Nonlinear Math. Phys., 18:3 (2011), 377–400 | DOI | MR | Zbl

[20] A. V. Kazeykina, R. G. Novikov, “Large time asymptotics for the Grinevich–Zakharov potentials”, Bull. Sci. Math., 135:4 (2011), 374–382 | DOI | MR | Zbl

[21] A. V. Kazeykina, R. G. Novikov, “Absence of exponentially localized solitons for the Novikov–Veselov equation at negative energy”, Nonlinearity, 24:6 (2011), 1821–1830 | DOI | MR | Zbl

[22] S. V. Manakov, “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5 (1976), 245–246 | MR | Zbl

[23] R. G. Novikov, “The inverse scattering problem on a fixed energy level for the two–dimensional Schrödinger operator”, J. Funct. Anal., 103:2 (1992), 409–463 | DOI | MR | Zbl

[24] R. G. Novikov, “Absence of exponentially localized solitons for the Novikov–Veselov equation at positive energy”, Physics Letters A, 375:9 (2011), 1233–1235 | DOI | MR | Zbl

[25] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shrëdingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[26] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shrëdingera. Potentsialnye operatory”, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl