Quasi-Classical Asymptotics of Solutions to the Matrix Factorization Problem with Quadratically Oscillating Off-Diagonal Elements
Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the asymptotic behavior of solutions to the $2\times 2$ matrix factorization (Riemann–Hilbert) problem with rapidly oscillating off-diagonal elements and quadratic phase function. A new approach to study such problems based on the ideas of the stationary phase method and M. G. Krein's theory is proposed. The problem is model for investigating the asymptotic behavior of solutions to factorization problems with several turning points. Power-order complete asymptotic expansions for solutions to the problem under consideration are found. These asymptotics are used to construct asymptotics for solutions to the Cauchy problem for the nonlinear Schrödinger equation at large times.
Keywords: oscillatory Riemann–Hilbert problems, semiclassical asymptotics, singular integral equations, nonlinear equations of mathematical physics.
@article{FAA_2014_48_1_a0,
     author = {A. M. Budylin and V. S. Buslaev},
     title = {Quasi-Classical {Asymptotics} of {Solutions} to the {Matrix} {Factorization} {Problem} with {Quadratically} {Oscillating} {Off-Diagonal} {Elements}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a0/}
}
TY  - JOUR
AU  - A. M. Budylin
AU  - V. S. Buslaev
TI  - Quasi-Classical Asymptotics of Solutions to the Matrix Factorization Problem with Quadratically Oscillating Off-Diagonal Elements
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2014
SP  - 1
EP  - 18
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a0/
LA  - ru
ID  - FAA_2014_48_1_a0
ER  - 
%0 Journal Article
%A A. M. Budylin
%A V. S. Buslaev
%T Quasi-Classical Asymptotics of Solutions to the Matrix Factorization Problem with Quadratically Oscillating Off-Diagonal Elements
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2014
%P 1-18
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a0/
%G ru
%F FAA_2014_48_1_a0
A. M. Budylin; V. S. Buslaev. Quasi-Classical Asymptotics of Solutions to the Matrix Factorization Problem with Quadratically Oscillating Off-Diagonal Elements. Funkcionalʹnyj analiz i ego priloženiâ, Tome 48 (2014) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/FAA_2014_48_1_a0/

[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 2, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1966 | MR

[2] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskie integralnye uravneniya i asimptoticheskoe povedenie reshenii uravneniya Kortevega–de Friza pri bolshikh vremenakh”, Dokl. RAN, 348:4 (1996), 455–458 | MR | Zbl

[3] A. M. Budylin, V. S. Buslaev, “Uravnenie Gelfanda–Levitana–Marchenko i asimptoticheskoe povedenie reshenii nelineinogo uravneniya Shrëdingera pri bolshikh vremenakh”, Algebra i analiz, 12:5 (2000), 64–105 | MR

[4] I. Ts. Gokhberg, N. Ya. Krupnik, Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[5] A. R. Its, “Asimptotika reshenii nelineinogo uravneniya Shrëdingera i izomonodromnye deformatsii sistem lineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 261:1 (1981), 14–18 | MR | Zbl

[6] P. A. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math., 137:2 (1993), 295–368 | DOI | MR | Zbl

[7] P. A. Deift, X. Zhou, Long-time behavior of the non-focusing nonlinear Schrödinger equation—a case study, University of Tokyo, Tokyo, 1994 | MR

[8] V. E. Zakharov, S. V. Manakov, “Asimptoticheskoe povedenie nelineinykh volnovykh sistem, integriruemykh metodom obratnoi zadachi rasseyaniya”, ZhETF, 71:1 (1976), 203–215 | MR