Subadditive Maps and Functional Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 90-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a group $G$ and a set $\Omega$, we say that a map $F\colon G\to 2^{\Omega}$ is subadditive if $F(gh) \subset F(g)\cup F(h)$ for all $g,h\in G$. Our main result on subadditive maps is that $|\bigcup_{g\in G}F(g)| \le 4 \sup_{g\in G}|F(g)|$, where $|M|$ denotes the number of elements of a subset $M\subset \Omega$. We also consider some extensions of this inequality to maps with values in the $\sigma$-algebra of all measurable subsets of a measure space and to maps with values in subspaces of a linear space. As an application, we obtain a description of solutions of some functional equations related to addition theorems.
Keywords: subadditive set-valued functions on groups, representations of topological groups, functional equations on groups, addition theorems.
@article{FAA_2013_47_4_a8,
     author = {E. V. Shul'man},
     title = {Subadditive {Maps} and {Functional} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--94},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a8/}
}
TY  - JOUR
AU  - E. V. Shul'man
TI  - Subadditive Maps and Functional Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 90
EP  - 94
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a8/
LA  - ru
ID  - FAA_2013_47_4_a8
ER  - 
%0 Journal Article
%A E. V. Shul'man
%T Subadditive Maps and Functional Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 90-94
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a8/
%G ru
%F FAA_2013_47_4_a8
E. V. Shul'man. Subadditive Maps and Functional Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 90-94. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a8/