On Vector-Valued Banach Limits
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 82-86

Voir la notice de l'article provenant de la source Math-Net.Ru

In this brief communication we propose a vector-valued version of Lorentz' intrinsic characterization of almost convergence, for which we find a legitimate extension of the concept of Banach limit to vector-valued sequences. Banach spaces $1$-complemented in their biduals admit vector-valued Banach limits, whereas $c_0$ does not.
Keywords: Banach limit, almost convergence.
@article{FAA_2013_47_4_a6,
     author = {R. Armario and F. J. Garcia-Pacheco and F. J. Perez-Fernandez},
     title = {On {Vector-Valued} {Banach} {Limits}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--86},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/}
}
TY  - JOUR
AU  - R. Armario
AU  - F. J. Garcia-Pacheco
AU  - F. J. Perez-Fernandez
TI  - On Vector-Valued Banach Limits
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 82
EP  - 86
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/
LA  - ru
ID  - FAA_2013_47_4_a6
ER  - 
%0 Journal Article
%A R. Armario
%A F. J. Garcia-Pacheco
%A F. J. Perez-Fernandez
%T On Vector-Valued Banach Limits
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 82-86
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/
%G ru
%F FAA_2013_47_4_a6
R. Armario; F. J. Garcia-Pacheco; F. J. Perez-Fernandez. On Vector-Valued Banach Limits. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 82-86. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/