On Vector-Valued Banach Limits
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 82-86
Cet article a éte moissonné depuis la source Math-Net.Ru
In this brief communication we propose a vector-valued version of Lorentz' intrinsic characterization of almost convergence, for which we find a legitimate extension of the concept of Banach limit to vector-valued sequences. Banach spaces $1$-complemented in their biduals admit vector-valued Banach limits, whereas $c_0$ does not.
Keywords:
Banach limit, almost convergence.
@article{FAA_2013_47_4_a6,
author = {R. Armario and F. J. Garcia-Pacheco and F. J. Perez-Fernandez},
title = {On {Vector-Valued} {Banach} {Limits}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--86},
year = {2013},
volume = {47},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/}
}
R. Armario; F. J. Garcia-Pacheco; F. J. Perez-Fernandez. On Vector-Valued Banach Limits. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 82-86. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/
[1] A. Aizpuru, R. Armario, F. J. García-Pacheco, F. J. Pérez-Fernández, J. Math. Anal. Appl., 379:1 (2011), 82–90 | DOI | MR | Zbl
[2] S. Banach, Théorie des opérations linéaires, Chelsea Publ., New York, 1978 | MR
[3] J. Boos, Classical and Modern Methods in Summability, Oxford University Press, New York, 2000 | MR | Zbl
[4] V. M. Kadets, B. Shumiatskiy, Matem. fiz., anal., geom., 7:2 (2000), 184–195 | MR | Zbl
[5] V. M. Kadets, B. Shumiatskiy, Acta Math. Hungar., 90:4 (2001), 293–305 | DOI | MR | Zbl
[6] G. Lorentz, Acta Math., 80 (1948), 167–190 | DOI | MR | Zbl
[7] A. L. Peressini, Studia Math., 35 (1970), 111–121 | DOI | MR | Zbl
[8] E. M. Semenov, F. A. Sukochev, J. Func. Anal., 259:6 (2010), 1517–1541 | DOI | MR | Zbl