On Vector-Valued Banach Limits
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 82-86
Voir la notice de l'article provenant de la source Math-Net.Ru
In this brief communication we propose a vector-valued version of Lorentz' intrinsic characterization of almost convergence, for which we find a legitimate extension of the concept of Banach limit to vector-valued sequences. Banach spaces $1$-complemented in their biduals admit vector-valued Banach limits, whereas $c_0$ does not.
Keywords:
Banach limit, almost convergence.
@article{FAA_2013_47_4_a6,
author = {R. Armario and F. J. Garcia-Pacheco and F. J. Perez-Fernandez},
title = {On {Vector-Valued} {Banach} {Limits}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--86},
publisher = {mathdoc},
volume = {47},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/}
}
TY - JOUR AU - R. Armario AU - F. J. Garcia-Pacheco AU - F. J. Perez-Fernandez TI - On Vector-Valued Banach Limits JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 82 EP - 86 VL - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/ LA - ru ID - FAA_2013_47_4_a6 ER -
R. Armario; F. J. Garcia-Pacheco; F. J. Perez-Fernandez. On Vector-Valued Banach Limits. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 82-86. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a6/