Flexibility of Affine Cones over del~Pezzo Surfaces of Degree~4 and~5
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the action of the special automorphism group on affine cones over del Pezzo surfaces of degree 4 and 5 is infinitely transitive.
Mots-clés : automorphism group, del Pezzo surface
Keywords: affine cone, infinite transitivity, flexibility, one-parameter unipotent group.
@article{FAA_2013_47_4_a3,
     author = {A. Yu. Perepechko},
     title = {Flexibility of {Affine} {Cones} over {del~Pezzo} {Surfaces} of {Degree~4} and~5},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Perepechko
TI  - Flexibility of Affine Cones over del~Pezzo Surfaces of Degree~4 and~5
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 45
EP  - 52
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a3/
LA  - ru
ID  - FAA_2013_47_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Perepechko
%T Flexibility of Affine Cones over del~Pezzo Surfaces of Degree~4 and~5
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 45-52
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a3/
%G ru
%F FAA_2013_47_4_a3
A. Yu. Perepechko. Flexibility of Affine Cones over del~Pezzo Surfaces of Degree~4 and~5. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 45-52. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a3/

[1] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972 | MR

[2] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR

[3] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823 | DOI | MR | Zbl

[4] I. V. Arzhantsev, M. G. Zaidenberg, K. G. Kuyumzhiyan, “Mnogoobraziya flagov, toricheskie mnogoobraziya i nadstroiki: tri primera tri primera beskonechnoi tranzitivnosti”, Matem. sb., 203:7 (2012), 3–30 | DOI | MR | Zbl

[5] I. Cheltsov, J. Park, J. Won, Affine cones over smooth cubic surfaces, arXiv: 1303.2648

[6] I. V. Dolgachev, Classical Algebraic Geometry: Modern View, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[7] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, “Group actions on affine cones”, Affine Algebraic Geometry, CRM Proc. and Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 123–163 | DOI | MR | Zbl

[8] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, “Unipotent group actions on Del Pezzo cones”, J. Algebraic Geometry, v pechati | MR

[9] R. Lazarsfeld, Positivity in Algebraic Geometry I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete, 48, Springer-Verlag, 2004 | MR | Zbl

[10] W. A. Stein et al., Sage Mathematics Software (Version 4.6.1). The Sage Development Team, 2011; http://www.sagemath.org