On Wild and Tame Finite-Dimensional Lie Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 30-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

All finite-dimensional Lie algebras over an algebraically closed field of characteristic zero are found for which the problem of classifying finite-dimensional representations is not wild.
Keywords: Lie algebra, tame Lie algebra, wild Lie algebra, classification of finite-dimensional representations.
@article{FAA_2013_47_4_a2,
     author = {E. A. Makedonskii},
     title = {On {Wild} and {Tame} {Finite-Dimensional} {Lie} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a2/}
}
TY  - JOUR
AU  - E. A. Makedonskii
TI  - On Wild and Tame Finite-Dimensional Lie Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 30
EP  - 44
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a2/
LA  - ru
ID  - FAA_2013_47_4_a2
ER  - 
%0 Journal Article
%A E. A. Makedonskii
%T On Wild and Tame Finite-Dimensional Lie Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 30-44
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a2/
%G ru
%F FAA_2013_47_4_a2
E. A. Makedonskii. On Wild and Tame Finite-Dimensional Lie Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 30-44. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a2/

[1] I. M. Gelfand, V. A. Ponomarev, “Zamechaniya o klassifikatsii pary kommutiruyuschikh lineinykh preobrazovanii v konechnomernom prostranstve”, Funkts. analiz i ego pril., 3:4 (1969), 81–82 | MR | Zbl

[2] Yu. A. Drozd, “Ruchnye i dikie matrichnye zadachi”, Matrichnye zadachi, AN UkrSSR, Institut matematiki, Kiev, 1977, 104–114 | MR

[3] Yu. A. Drozd, “Predstavleniya kommutativnykh algebr”, Funkts. analiz i ego pril., 6:4 (1973), 41–43 | MR | Zbl

[4] Yu. A. Drozd, G.-M. Greuel, I. Kashuba, “On Cohen–Macaulay modules on surface singularities”, Mosc. Math. J., 3:2 (2003), 397–418 | DOI | MR | Zbl

[5] Yang Han, “Wild two-point algebras”, J. Algebra, 247:1 (2002), 57–77 | DOI | MR | Zbl

[6] V. L. Ostrovskii, Yu. S. Samoilenko, “O parakh operatorov, svyazannykh kvadratichnym sootnosheniem”, Funkts. analiz i ego pril., 47:1 (2013), 82–87 | DOI | MR

[7] M. Goto, F. Grosskhans, Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[8] L. A. Nazarova, “Predstavleniya kolchanov beskonechnogo tipa”, Izv. AN SSSR, 37:4 (1973), 752–791 | MR | Zbl

[9] P. Gabriel, A. V. Roiter, Representations of Finite Dimensional Algebras, Encuclopaedia of Math. Sci., 73 (Algebra 8), Springer-Verlag, Berlin, 1992 | MR | Zbl

[10] P. Zusmanovich, “A converse to the second Whitehead Lemma”, J. Lie Theory, 18:2 (2008), 295–299 | MR | Zbl

[11] K. Morita, “Duality of modules and its applications to the theory of rings with minimal condition”, Sci. Rep. Tokyo Kyoiku Diagaku. Sect. A, 6 (1958), 83–142 | MR | Zbl