Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_4_a1, author = {A. A. Vladimirov and I. A. Sheipak}, title = {On the {Neumann} {Problem} for the {Sturm--Liouville} {Equation} with {Cantor-Type} {Self-Similar} {Weight}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {18--29}, publisher = {mathdoc}, volume = {47}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/} }
TY - JOUR AU - A. A. Vladimirov AU - I. A. Sheipak TI - On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 18 EP - 29 VL - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/ LA - ru ID - FAA_2013_47_4_a1 ER -
%0 Journal Article %A A. A. Vladimirov %A I. A. Sheipak %T On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight %J Funkcionalʹnyj analiz i ego priloženiâ %D 2013 %P 18-29 %V 47 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/ %G ru %F FAA_2013_47_4_a1
A. A. Vladimirov; I. A. Sheipak. On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 18-29. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/
[1] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl
[2] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967 | MR
[3] J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys., 158:1 (1993), 93–125 | DOI | MR | Zbl
[4] M. Levitin, D. Vassiliev, “Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals”, Proc. London Math. Soc., 72:1 (1996), 188–214 | DOI | MR | Zbl
[5] T. Uno, I. Hong, “Some consideration of asymptotic distribution of eigenvalues for the equation $d^2u/dx^2+\lambda\rho(x)u=0$”, Japan. J. Math., 29 (1959), 152–164 | DOI | MR | Zbl
[6] T. Fujita, “A fractional dimension, self-similarity and a generalized diffusion operator”, Probabilistic Methods in Mathematical Physics, Proc. Taniguchi Intern. Symp. (Katata/Kyoto, 1985), Academic Press, Boston, MA, 1987, 83–90 | MR
[7] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl
[8] A. A. Vladimirov, I. A. Sheipak, “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Trudy MIAN, 255 (2006), 88–98 | MR | Zbl
[9] A. I. Nazarov, “Logarifmicheskaya asimptotika malykh uklonenii dlya nekotorykh gaussovskikh protsessov v $L_2$-norme otnositelno samopodobnoi mery”, Zap. nauchn. sem. POMI, 311 (2004), 190–213 | MR | Zbl
[10] A. A. Vladimirov, I. A. Sheipak, “Asimptotika sobstvennykh znachenii zadachi Shturma–Liuvillya s diskretnym samopodobnym vesom”, Matem. zametki, 88:5 (2010), 662–672 | DOI | MR | Zbl
[11] A. A. Shkalikov, Zh. Ben Amara, “Ostsillyatsionnye teoremy dlya zadach Shturma–Liuvillya s potentsialami-raspredeleniyami”, Vestnik MGU, ser. 1: matem., mekh., 2009, no. 3, 40–43 | MR
[12] A. A. Vladimirov, “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1609–1621 | MR | Zbl
[13] E. J. Bird, S.-M. Ngai, A. Teplyaev, “Fractal Laplacians on the unit interval”, Ann. Sci. Math. Québec, 27:2 (2003), 135–168 | MR | Zbl
[14] A. A. Vladimirov, I. A. Sheipak, “Osobennosti uslovii Neimana v zadache Shturma–Liuvillya s singulyarnym vesom”, Mezhdunar. konf. «Differentsialnye uravneniya i smezhnye voprosy», posvyaschennaya 103-letiyu I. G. Petrovskogo. Sb. tezisov, MGU, M., 2004, 238–239
[15] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[16] Yu. N. Subbotin, N. I. Chernykh, “Poryadok nailuchshikh splain-priblizhenii nekotorykh klassov funktsii”, Matem. zametki, 7:1 (1970), 31–42 | MR | Zbl
[17] I. A. Sheipak, “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl
[18] P. Lancaster, A. Shkalikov, Qiang Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equation Operator Theory, 17:3 (1993), 338–360 | DOI | MR | Zbl
[19] F. Riss, B. Sëkefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR
[20] S. Saks, Teoriya integrala, IL, M., 1949 | Zbl
[21] A. A. Markov, “O konstruktivnoi matematike”, Trudy MIAN, 67 (1962), 8–14 | MR | Zbl
[22] A. A. Vladimirov, I. A. Sheipak, “Asimptotika sobstvennykh znachenii zadachi vysshego chetnogo poryadka s diskretnym samopodobnym vesom”, Algebra i analiz, 24:2 (2012), 104–119 | MR
[23] A. I. Nazarov, “Ob odnom semeistve preobrazovanii gaussovskikh sluchainykh funktsii”, TVP, 54:2 (2009), 209–225 | DOI | MR | Zbl
[24] A. A. Vladimirov, “O vychislenii sobstvennykh znachenii zadachi Shturma–Liuvillya s fraktalnym indefinitnym vesom”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1350–1355 | MR