On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second and third boundary value problems for the Sturm–Liouville equation in which the weight function is the generalized derivative of a Cantor-type self-similar function are considered. The oscillation properties of the eigenfunctions of these problems are studied, and on the basis of this study, known asymptotics of their spectra are substantially refined. Namely, it is proved that the function $s$ in the well-known formula $$ N(\lambda)=\lambda^D\cdot [s(\ln\lambda)+o(1)] $$ decomposes into the product of a decreasing exponential and a nondecreasing purely singular function (and, thereby, is not constant).
Mots-clés : Sturm–Liouville problem
Keywords: self-similar weight, Neumann boundary conditions, third-type boundary conditions, spectral periodicity.
@article{FAA_2013_47_4_a1,
     author = {A. A. Vladimirov and I. A. Sheipak},
     title = {On the {Neumann} {Problem} for the {Sturm--Liouville} {Equation} with {Cantor-Type} {Self-Similar} {Weight}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/}
}
TY  - JOUR
AU  - A. A. Vladimirov
AU  - I. A. Sheipak
TI  - On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 18
EP  - 29
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/
LA  - ru
ID  - FAA_2013_47_4_a1
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%A I. A. Sheipak
%T On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 18-29
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/
%G ru
%F FAA_2013_47_4_a1
A. A. Vladimirov; I. A. Sheipak. On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 4, pp. 18-29. http://geodesic.mathdoc.fr/item/FAA_2013_47_4_a1/

[1] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[2] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967 | MR

[3] J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys., 158:1 (1993), 93–125 | DOI | MR | Zbl

[4] M. Levitin, D. Vassiliev, “Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals”, Proc. London Math. Soc., 72:1 (1996), 188–214 | DOI | MR | Zbl

[5] T. Uno, I. Hong, “Some consideration of asymptotic distribution of eigenvalues for the equation $d^2u/dx^2+\lambda\rho(x)u=0$”, Japan. J. Math., 29 (1959), 152–164 | DOI | MR | Zbl

[6] T. Fujita, “A fractional dimension, self-similarity and a generalized diffusion operator”, Probabilistic Methods in Mathematical Physics, Proc. Taniguchi Intern. Symp. (Katata/Kyoto, 1985), Academic Press, Boston, MA, 1987, 83–90 | MR

[7] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl

[8] A. A. Vladimirov, I. A. Sheipak, “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Trudy MIAN, 255 (2006), 88–98 | MR | Zbl

[9] A. I. Nazarov, “Logarifmicheskaya asimptotika malykh uklonenii dlya nekotorykh gaussovskikh protsessov v $L_2$-norme otnositelno samopodobnoi mery”, Zap. nauchn. sem. POMI, 311 (2004), 190–213 | MR | Zbl

[10] A. A. Vladimirov, I. A. Sheipak, “Asimptotika sobstvennykh znachenii zadachi Shturma–Liuvillya s diskretnym samopodobnym vesom”, Matem. zametki, 88:5 (2010), 662–672 | DOI | MR | Zbl

[11] A. A. Shkalikov, Zh. Ben Amara, “Ostsillyatsionnye teoremy dlya zadach Shturma–Liuvillya s potentsialami-raspredeleniyami”, Vestnik MGU, ser. 1: matem., mekh., 2009, no. 3, 40–43 | MR

[12] A. A. Vladimirov, “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1609–1621 | MR | Zbl

[13] E. J. Bird, S.-M. Ngai, A. Teplyaev, “Fractal Laplacians on the unit interval”, Ann. Sci. Math. Québec, 27:2 (2003), 135–168 | MR | Zbl

[14] A. A. Vladimirov, I. A. Sheipak, “Osobennosti uslovii Neimana v zadache Shturma–Liuvillya s singulyarnym vesom”, Mezhdunar. konf. «Differentsialnye uravneniya i smezhnye voprosy», posvyaschennaya 103-letiyu I. G. Petrovskogo. Sb. tezisov, MGU, M., 2004, 238–239

[15] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[16] Yu. N. Subbotin, N. I. Chernykh, “Poryadok nailuchshikh splain-priblizhenii nekotorykh klassov funktsii”, Matem. zametki, 7:1 (1970), 31–42 | MR | Zbl

[17] I. A. Sheipak, “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl

[18] P. Lancaster, A. Shkalikov, Qiang Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equation Operator Theory, 17:3 (1993), 338–360 | DOI | MR | Zbl

[19] F. Riss, B. Sëkefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[20] S. Saks, Teoriya integrala, IL, M., 1949 | Zbl

[21] A. A. Markov, “O konstruktivnoi matematike”, Trudy MIAN, 67 (1962), 8–14 | MR | Zbl

[22] A. A. Vladimirov, I. A. Sheipak, “Asimptotika sobstvennykh znachenii zadachi vysshego chetnogo poryadka s diskretnym samopodobnym vesom”, Algebra i analiz, 24:2 (2012), 104–119 | MR

[23] A. I. Nazarov, “Ob odnom semeistve preobrazovanii gaussovskikh sluchainykh funktsii”, TVP, 54:2 (2009), 209–225 | DOI | MR | Zbl

[24] A. A. Vladimirov, “O vychislenii sobstvennykh znachenii zadachi Shturma–Liuvillya s fraktalnym indefinitnym vesom”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1350–1355 | MR